-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.lambda
41 lines (41 loc) · 1.31 KB
/
test.lambda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
type NatList=µX.<nil:Unit, cons:{Nat, X}>;
type NLBody=<nil:Unit, cons:{Nat, NatList}>;
type TFNat=Nat->Nat->Nat;
type D=µA.A->TFNat;
type TFNatlist=NatList->Nat;
type E=µA.A->(µX.<nil:Unit, cons:{Nat, X}>)->Nat;
// this is actually a Z-combinator, because we are using a strict evaluation strategy
let fixBinNat=(
\f:TFNat->TFNat.
(λx:D. f (λv:Nat.(((unfold [D] x) x) v)))
(fold [D] (λx:D. f (λv:Nat.((unfold [D] x) x) v)))) in
let fixNatList=(
\f:TFNatlist->TFNatlist.
(λx:E. f (λv:NatList.(((unfold [E] x) x) v)))
(fold [E] (λx:E. f (λv:NatList.((unfold [E] x) x) v)))) in
let add=(fixBinNat
λadd:Nat->Nat->Nat.
λn:Nat.λm:Nat.
if (iszero n)
then m
else succ (add (pred n) m)) in
let nil=(fold [NatList] <nil=unit> as NLBody) in
let cons=(λn:Nat.λl:NatList.fold [NatList] <cons={n, l}> as NLBody) in
let isnil=(λl:NatList.
case (unfold [NatList] l) of
<nil=x> => true,
<cons=t> => false) in
let head=(λl:NatList.
case (unfold [NatList] l) of
<nil=x> => 0,
<cons=t> => t.1) in
let tail=(λl:NatList.
case (unfold [NatList] l) of
<nil=x> => l,
<cons=t> => t.2) in
let reduce=((fixNatList \f:NatList->Nat.\x:NatList.case (unfold [NatList] x) of
<nil=x> => 0,
<cons=x> => add x.1 (f x.2))) in
let sum=reduce in
let list=(cons 4 (cons 3 nil)) in
sum list