-
Notifications
You must be signed in to change notification settings - Fork 3
/
train.py
226 lines (211 loc) · 9.81 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import os
import shutil
import random
import argparse
from tqdm import tqdm
import torch
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from model import DynamicAuthorLanguageModel
from corpus import Corpus, text_collate
from utils import load_corpus, load_fold, neg_log_prob, perplexity
def train_step(model, optimizer, batch, device, opt):
# perform a single stochastic gradient step
model.train()
optimizer.zero_grad()
# extract data from batch and send them to GPU
text = batch.text.to(device)
input_text = text[:-1]
target_text = text[1:]
authors = batch.author.to(device)
timesteps = batch.timestep.to(device)
n = text.shape[1]
ntkn = target_text.ne(Corpus.pad_id).sum().item()
# forward
pred, _ = model(input_text, authors, timesteps)
# loss
loss = 0
# -- word level nll
nll = neg_log_prob(pred, target_text).sum() / n
loss += nll
# -- L2 regularization of static word embeddings
if opt.l2_a > 0:
ha = model.author_embedding.weight
loss += opt.l2_a * 0.5 * ha.pow(2).sum() / opt.n_ex
# backward
loss.backward()
# step
optimizer.step()
return perplexity(nll.item() * n / ntkn)
def evaluate(model, testloader, device):
model.eval()
ntkn = 0
nll = 0
for batch in testloader:
# data
text = batch.text.to(device)
input_text = text[:-1]
target_text = text[1:]
authors = batch.author.to(device)
timesteps = batch.timestep.to(device)
ntkn += target_text.ne(Corpus.pad_id).sum().item()
# forward
pred, _ = model(input_text, authors, timesteps)
# perplexity
nll += neg_log_prob(pred, target_text).sum().item()
return perplexity(nll / ntkn)
def main(opt):
opt.hostname = os.uname()[1]
# cudnn
if opt.device.lstrip('-').isdigit() and int(opt.device) <= -1:
device = torch.device('cpu')
else:
os.environ["CUDA_VISIBLE_DEVICES"] = str(opt.device)
device = torch.device('cuda')
# seed
if opt.manual_seed is None:
opt.manual_seed = random.randint(1, 10000)
print(f"seed: {opt.manual_seed}")
random.seed(opt.manual_seed)
torch.manual_seed(opt.manual_seed)
# xp dir
if os.path.isdir(opt.xp_dir):
if input(f'Experiment folder already exists at {opt.xp_dir}. Erase it? (y|n)') in ('yes', 'y'):
shutil.rmtree(opt.xp_dir)
else:
print('Terminating experiment...')
exit(0)
os.makedirs(opt.xp_dir)
print(f'Experiment directory created at {opt.xp_dir}')
##################################################################################################################
# Data
##################################################################################################################
print('Loading data...')
# load corpus
corpus = load_corpus(opt)
# trainset
trainset = load_fold(corpus, 'train', opt.data_dir)
trainloader = DataLoader(trainset, batch_size=opt.batch_size, collate_fn=text_collate, shuffle=True,
pin_memory=True, drop_last=True)
# testset
testset = load_fold(corpus, 'test', opt.data_dir)
testloader = DataLoader(testset, batch_size=opt.batch_size, collate_fn=text_collate, shuffle=False,
pin_memory=True)
# attributes
opt.n_ex = len(trainset)
opt.naut = trainset.na
opt.ntoken = corpus.vocab_size
opt.padding_idx = Corpus.pad_id
##################################################################################################################
# Model
##################################################################################################################
print('Building model...')
model = DynamicAuthorLanguageModel(opt.ntoken, opt.nwe, opt.naut, opt.nha, opt.nhat, opt.nhid_dyn, opt.nlayers_dyn,
opt.cond_fusion, opt.nhid_lm, opt.nlayers_lm, opt.dropouti, opt.dropoutl,
opt.dropoutw, opt.dropouto, opt.tie_weights, opt.padding_idx).to(device)
opt.model = str(model)
opt.nparameters = sum(p.nelement() for p in model.parameters())
print(f'{opt.nparameters} parameters')
##################################################################################################################
# Optimizer
##################################################################################################################
model_params = list(model.named_parameters())
no_wd = ['entity_embedding']
optimizer_grouped_parameters = [
{'params': [p for n, p in model_params if not any(nd in n for nd in no_wd)], 'weight_decay': opt.wd},
{'params': [p for n, p in model_params if any(nd in n for nd in no_wd)], 'weight_decay': 0.0}]
optimizer = torch.optim.Adam(optimizer_grouped_parameters, lr=opt.lr)
opt.optimizer = str(optimizer)
# learning rate scheduling
niter = opt.lr_scheduling_burnin + opt.lr_scheduling_niter
lr_scheduler = torch.optim.lr_scheduler.LambdaLR(
optimizer,
lr_lambda=lambda i: max(0, (opt.lr_scheduling_niter - i) / opt.lr_scheduling_niter))
##################################################################################################################
# Training
##################################################################################################################
print('Training...')
cudnn.benchmark = True
assert niter > 0
pb = tqdm(total=niter, ncols=0, desc='iter')
itr = -1
finished = False
ppl_test = None
while not finished:
# train
for batch in trainloader:
itr += 1
# gradient step
ppl_train = train_step(model, optimizer, batch, device, opt)
# lr scheduling
if itr >= opt.lr_scheduling_burnin:
lr_scheduler.step()
# progress bar
pb.set_postfix(ppl_train=ppl_train, ppl_test=ppl_test, lr=optimizer.param_groups[0]['lr'])
pb.update()
# break ?
if itr > 0 and itr % opt.chkpt_interval == 0:
break
if itr >= niter:
finished = True
break
# eval
if itr % opt.chkpt_interval == 0:
with torch.no_grad():
ppl_test = evaluate(model, testloader, device)
torch.save(
{'model': model.state_dict(), 'optimizer': optimizer.state_dict(), 'opt': opt},
os.path.join(opt.xp_dir, 'model.pth')
)
pb.close()
with torch.no_grad():
ppl_test = evaluate(model, testloader, device)
print(f'Final test ppl: {ppl_test}')
print('Saving model...')
torch.save(
{'model': model.state_dict(), 'optimizer': optimizer.state_dict(), 'opt': opt},
os.path.join(opt.xp_dir, 'model.pth')
)
print('Done')
if __name__ == '__main__':
# arguments
parser = argparse.ArgumentParser()
# -- data
parser.add_argument('--dataroot', type=str, default='data', help='Path to base data dir')
parser.add_argument('--corpus', type=str, required=True, help='Name of corpus (s2|nyt)')
parser.add_argument('--task', type=str, required=True, help='Task name (modeling|imputation|prediction)')
parser.add_argument('--bert_cache_dir', type=str, default='bert_cache', help='Where to download bert tokenizer')
# -- xp
parser.add_argument('--xp_dir', type=str, required=True, help='Xp results will be saved here')
parser.add_argument('--manual_seed', type=int, help='manual seed')
# -- model
parser.add_argument('--nwe', type=int, default=400, help='size of word embedding')
parser.add_argument('--nha', type=int, default=30, help='size of static author representation')
parser.add_argument('--nhat', type=int, default=10, help='size of dynamic author representation')
parser.add_argument('--cond_fusion', type=str, default='w0',
help='how to fuse conditioning vectors [ha, hat] into rnn language mode? (w0|h0|cat)')
parser.add_argument('--nhid_dyn', type=int, default=64, help='size of the dynamic function hidden vectors')
parser.add_argument('--nlayers_dyn', type=int, default=3, help='number of layers in the dynamic function')
parser.add_argument('--nhid_lm', type=int, default=400, help='size of rnn lm state vector')
parser.add_argument('--nlayers_lm', type=int, default=2, help='number of layers in rnn lm')
parser.add_argument('--dropouti', type=float, default=0.5, help='input dropout')
parser.add_argument('--dropoutl', type=float, default=0.1, help='dropout between rnn lm layers')
parser.add_argument('--dropouto', type=float, default=0.6, help='output dropout')
parser.add_argument('--dropoutw', type=float, default=0.4, help='weight dropout in rnn lm')
parser.add_argument('--tie_weights', action='store_true', help='tie embeddings and decoder weights?')
# -- regularization
parser.add_argument('--l2_a', type=float, default=0., help='L2 regularization static author representations')
parser.add_argument('--wd', type=float, default=0.0005, help='weight decay')
# -- optimizer
parser.add_argument('--lr', type=float, default=0.003, help='learning rate')
parser.add_argument('--lr_scheduling_burnin', type=int, default=50000, help='number of iter without lr scheduling')
parser.add_argument('--lr_scheduling_niter', type=int, default=20000, help='number of iter with linear lr scheduling')
parser.add_argument('--batch_size', type=int, default=64, help='batch size')
# -- checkpoints
parser.add_argument('--chkpt_interval', type=int, default=10000, help='number of iter between eval')
# -- cuda
parser.add_argument('--device', default='-1', help='-1: cpu; > -1: cuda device id')
# parse
opt = parser.parse_args()
# main
main(opt)