forked from sloisel/numeric
-
Notifications
You must be signed in to change notification settings - Fork 0
/
benchmark.html
221 lines (211 loc) · 8.23 KB
/
benchmark.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
<!doctype html>
<html>
<head>
<link rel="SHORTCUT ICON" href="favicon.ico">
<link href='http://fonts.googleapis.com/css?family=Lato' rel='stylesheet' type='text/css'>
<link rel="stylesheet" type="text/css" href="resources/style.css">
<title>Numeric Javascript: Benchmarks</title>
</head>
<body>
<!--#include file="resources/header.html" -->
We are now running a linear algebra performance benchmark; the results are plotted below. As we move right within each
test, the matrix size increases.<br><br>
<b>Performance (<a href="http://en.wikipedia.org/wiki/FLOPS">MFLOPS</a>; higher is better).</b>
<div style="width:1000px;overflow:hidden;font-size:14px;line-height:100%;">
<div id="placeholder" style="width:700px;height:500px;float:left;"></div>
<div id="legend" style="width:250px;height:100px;overflow:hidden;"></div>
</div>
<div id="meanscore">Geometric mean of scores: </div><br>
<table id="bench"></table>
<!--[if lte IE 9]><script language="javascript" type="text/javascript" src="tools/excanvas.min.js"></script><![endif]-->
<!--<script src="lib/numeric.js"></script>
<script src="tools/sylvester.js"></script>
<script src="tools/trunk/closure/goog/base.js"></script>
<script src="tools/jquery-1.7.1.min.js"></script>
<script src="tools/jquery.flot.min.js"></script>-->
<script src="tools/benchlib.js"></script>
<script>
"use strict";
// Guess which browser needs this.
if (!('map' in Array.prototype)) {
Array.prototype.map= function(mapper, that /*opt*/) {
var other= new Array(this.length);
for (var i= 0, n= this.length; i<n; i++)
if (i in this)
other[i]= mapper.call(that, this[i], i, this);
return other;
};
}
goog.require('goog.math.Matrix');
var bench = numeric.bench;
var geometricmeans = [0,0,0];
var mkA = function(n) { return numeric.random([n,n]); };
var mkV = function(n) { return numeric.random([n]); };
var benchmarks = [
[
'abs(vector)', [3,10,30,100,300,1000,3000],
function(n) { var V = mkV(n); return bench(function() { numeric.abs(V); }); },
function(n) { var V = new goog.math.Matrix([mkV(n)]); return bench(function() { V.toArray().map(Math.abs); }); },
function(n) { var V = $V(mkV(n)); return bench(function() { V.map(Math.abs); }); }
],
[
'Create identity', [3,10,30,100,300,1000],
function(n) { return bench(function() { numeric.identity(n); }); },
function(n) { return bench(function() { goog.math.Matrix.createIdentityMatrix(n); }); },
function(n) { return bench(function() { Matrix.I(n); }); }
],
[
'Matrix transpose', [3,10,30,100,300,1000],
function(n) { var A = mkA(n); return bench(function() { numeric.transpose(A); }); },
function(n) { var A = new goog.math.Matrix(mkA(n)); return bench(function() { A.getTranspose(); }); },
function(n) { var A = $M(mkA(n)); return bench(function() { A.transpose(); }); }
],
[
'Matrix-Vector product', [3,10,30,100,300,1000],
function(n) { var A = mkA(n), V = mkV(n); return bench(function() { numeric.dot(A,V); }); },
function(n) { var A = new goog.math.Matrix(mkA(n)), V = new goog.math.Matrix([mkV(n)]).getTranspose(); return bench(function() { A.multiply(V); }); },
function(n) { var A = $M(mkA(n)), V = $V(mkV(n)); return bench(function() { A.multiply(V); }); }
],
[
'Vector-Matrix product', [3,10,30,100,300,1000],
function(n) { var A = mkA(n), V = mkV(n); return bench(function() { numeric.dot(V,A); }); },
function(n) { var A = new goog.math.Matrix(mkA(n)), V = new goog.math.Matrix([mkV(n)]); return bench(function() { V.multiply(A); }); },
function(n) { var A = $M(mkA(n)), V = $V(mkV(n)); return bench(function() { A.transpose().multiply(V); }); }
],
['Ax+b', [3,10,30,100,300,1000],
function(n) { var A = mkA(n), x = mkV(n), b = mkV(n); return bench(function() { numeric.addeq(numeric.dot(A,x),b); }); },
function(n) { var A = new goog.math.Matrix(mkA(n)), x = new goog.math.Matrix([mkV(n)]).getTranspose(), b = new goog.math.Matrix([mkV(n)]).getTranspose(); return bench(function() { A.multiply(x).add(b); }); },
function(n) { var A = $M(mkA(n)), x = $V(mkV(n)), b = $V(mkV(n)); return bench(function() { A.multiply(x).add(b); }); }
],
[
'Matrix-Matrix product', [3,5,10,20,30,50,75,100],
function(n) { var A = mkA(n), B = mkA(n); return bench(function() { numeric.dot(A,B); }); },
function(n) { var A = new goog.math.Matrix(mkA(n)), B = new goog.math.Matrix(mkA(n)); return bench(function() { A.multiply(B); }); },
function(n) { var A = $M(mkA(n)), B = $M(mkA(n)); return bench(function() { A.multiply(B); }); }
],
[
'Matrix-Matrix sum', [3,5,10,20,30,50,75,100],
function(n) { var A = mkA(n); return bench(function() { numeric.add(A,A); }); },
function(n) { var A = new goog.math.Matrix(mkA(n)); return bench(function() { A.add(A); }); },
function(n) { var A = $M(mkA(n)); return bench(function() { A.add(A); }); }
],
[
'Matrix inverse', [3,5,10,20,30,50,75,100],
function(n) { var A = mkA(n); return bench(function() { numeric.inv(A); }); },
function(n) { var A = new goog.math.Matrix(mkA(n)); return bench(function() { A.getInverse(); }); },
function(n) { var A = $M(mkA(n)); return bench(function() { A.inv(); }); }
],
[
'Sparse Laplacian LU', [5,10,20,30],
function(n) { var A = numeric.ccsScatter(numeric.cdelsq(numeric.cgrid(n))); return bench(function() { numeric.ccsLUP(A); }); },
function(n) { return 0; },
function(n) { return 0; }
],
[
'Banded Laplacian LU', [5,10,20,30],
function(n) { var A = numeric.cdelsq(numeric.cgrid(n)); return bench(function() { numeric.cLU(A); }); },
function(n) { return 0; },
function(n) { return 0; }
]
];
var pwr = [1,2,2,2,2,2,3,2,3,4,4];
var k=0,b=0;
var libs = ['Numeric '+numeric.version,'Closure 5 Dec 2011','Sylvester 5 Dec 2011'];
var datasets = [];
var l;
var colors = ["#000","#00f","#0f0","#f80","#f0f","#0ff"];
for(l=0;l<libs.length;l++) {
datasets[l] = {
data: [],
label: libs[l],
color: colors[l],
points: { show: true },
lines: { show: true }
};
}
l=1;
var l0,xticks = [];
for(b=0;b<benchmarks.length;b++) {
l0 = l;
for(k=0;k<benchmarks[b][1].length;k++) {
l++;
}
xticks.push([(l0+l)*0.5,benchmarks[b][0]]);
}
k=0;
b=0;
var count = 1;
var MSIE = (/MSIE (\d+\.\d+);/.test(navigator.userAgent));
numeric.precision = 6;
var c0 = [[],[],[]];
var counts = [0,0,0];
function invbench(b,k,lib,rep) {
var ks,sz = benchmarks[b][1][k];
var i,j,foo;
ks = sz.toString();
if(rep>0 && c0[lib][rep-1] < 10) { c0[lib][rep] = c0[lib][rep-1]; }
else { foo = benchmarks[b][lib+2]; if(k===0) foo(sz); c0[lib][rep] = foo(sz); }
rep++;
if(rep === 1) { rep = 0; lib++; }
if(lib+2 === benchmarks[b].length) {
k++;
lib=0;
var cps = [];
var mi = 1e6/Math.pow(benchmarks[b][1][k-1],pwr[b]);
for(i=0;i<c0.length;i++) {
cps[i] = 0;
for(j=0;j<c0[i].length;j++) cps[i] += c0[i][j];
cps[i] /= (c0[i].length*mi);
}
for(i=0;i<cps.length;i++) {
if(MSIE || cps[i]) datasets[i].data.push([count,cps[i]]);
if(cps[i]) {
counts[i]++;
geometricmeans[i] += Math.log(cps[i]);
}
}
var foo = '<td>n='+ks+'</td>';
var color = '', uncolor='';
for(i=0;i<cps.length;i++) {
foo += '<td>'+cps[i].toPrecision(8)+'</td>';
}
if(!MSIE) {
var t = document.getElementById('bench');
var r = t.insertRow(-1);
if(k === 1) {
r.innerHTML = ('<td width=200px><b>'+benchmarks[b][0]+'</b></td>'
+'<td width=125px><b>Numeric</b></td>'
+'<td width=125px><b>Google Closure</b></td>'
+'<td width=125px><b>Sylvester</b></td>');
r = t.insertRow(-1);
}
r.innerHTML = foo;
}
$.plot($("#placeholder"), datasets,
{
legend: {container: '#legend'},
xaxis: {ticks:xticks, tickLength:0, min:1, max: l-1},
yaxis: {ticks:20}
});
c0 = [[],[],[]];
count++;
}
if(k === benchmarks[b][1].length) {
for(i=0;i<cps.length;i++) datasets[i].data.push(null);
k=0; b++;
}
if(b < benchmarks.length) {
setTimeout('invbench('+b.toString()
+','+k.toString()
+','+lib.toString()
+','+rep.toString()
+')',MSIE?10:0);
} else {
geometricmeans = numeric.exp(numeric.div(geometricmeans,counts));
$('#meanscore')[0].innerHTML += numeric.prettyPrint(geometricmeans)+'MFLOPS';
}
}
window.onload = function() { invbench(0,0,0,0); }
</script>
<br><br><br>
</body>