-
Notifications
You must be signed in to change notification settings - Fork 78
/
Copy pathplots.R
71 lines (53 loc) · 2.91 KB
/
plots.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
library(ggplot2)
library(reshape)
# Some of the plots used in the blog post.
#################
# POLYA URN MODEL
#################
polya_urn_model_plots = function(num_balls, alpha) {
# Lazy man's repetition...
x1 = polya_urn_model(function() rnorm(1), num_balls, alpha)
x2 = polya_urn_model(function() rnorm(1), num_balls, alpha)
x3 = polya_urn_model(function() rnorm(1), num_balls, alpha)
x4 = polya_urn_model(function() rnorm(1), num_balls, alpha)
x5 = polya_urn_model(function() rnorm(1), num_balls, alpha)
d1 = data.frame(x = x1, type = "run #1")
d2 = data.frame(x = x2, type = "run #2")
d3 = data.frame(x = x3, type = "run #3")
d4 = data.frame(x = x4, type = "run #4")
d5 = data.frame(x = x5, type = "run #5")
d = rbind(d1, d2, d3, d4, d5)
qplot(x = x, data = d, geom = "density", fill = 1, alpha = I(0.85), xlab = "Color of ball in urn", ylab = "Density", main = paste("Polya Urn Model with Gaussian colors and alpha =", alpha)) + facet_grid( . ~ type )
}
polya_urn_model_plots(10, 1)
########################
# STICK-BREAKING PROCESS
########################
stick_breaking_process_plots = function(num_weights, alpha) {
x1 = stick_breaking_process(num_weights, alpha)
x2 = stick_breaking_process(num_weights, alpha)
x3 = stick_breaking_process(num_weights, alpha)
x4 = stick_breaking_process(num_weights, alpha)
x5 = stick_breaking_process(num_weights, alpha)
d1 = data.frame(x = 1:num_weights, weight = x1, type = "run #1")
d2 = data.frame(x = 1:num_weights, weight = x2, type = "run #2")
d3 = data.frame(x = 1:num_weights, weight = x3, type = "run #3")
d4 = data.frame(x = 1:num_weights, weight = x4, type = "run #4")
d5 = data.frame(x = 1:num_weights, weight = x5, type = "run #5")
d = rbind(d1, d2, d3, d4, d5)
qplot(x = x, weight = weight ,data = d, geom = "bar", xlab = "Stick", ylab = "Weight", main = paste("Stick-Breaking Process with alpha =", alpha), ylim = c(0, 1)) + scale_x_continuous(breaks = 1:num_weights) + facet_grid( . ~ type )
}
stick_breaking_process_plots(10, 5)
##############
# ALL CLUSTERS
##############
x = read.table("mcdonalds-data-with-clusters.tsv", header = T, sep = " ", comment.char = "", quote = "")
# Ignore duplicate food items.
x = ddply(x, .(name), function(df) head(df, 1))
# For each cluster, take at most 5 items (to avoid the plot being dominated by large clusters).
x = ddply(x, .(cluster), function(df) head(df, 5))
# Reorder names by cluster (so we can get a plot where all points in a cluster are together).
x$name = factor(x$name, levels = x$name[order(x$cluster)], ordered = T)
# Turn this into a tall-thin matrix.
m = melt(x, id = c("name", "cluster"))
qplot(variable, weight = value, data = m, fill = cluster, geom = "bar", xlab = "Nutritional variable", ylab = "z-scaled value", main = "McDonald's Food Clusters") + facet_wrap(~ name, ncol = 5) + coord_flip() + opts(axis.text.y = theme_text(size = 5), axis.text.x = theme_text(size = 5))