forked from daniilidis-group/EV-FlowNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
248 lines (201 loc) · 9.14 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
#!/usr/bin/env python
import os
import time
import tensorflow as tf
import numpy as np
from config import *
from data_loader import get_loader
from eval_utils import *
from model import *
from vis_utils import *
def drawImageTitle(img, title):
cv2.putText(img,
title,
(60, 20),
cv2.FONT_HERSHEY_SIMPLEX,
0.5,
(255, 255, 255),
thickness=2,
bottomLeftOrigin=False)
return img
def test(sess,
args,
event_image_loader,
prev_image_loader,
next_image_loader,
timestamp_loader):
global_step = tf.train.get_or_create_global_step()
with tf.variable_scope('vs'):
flow_dict = model(event_image_loader,
is_training=False,
do_batch_norm=not args.no_batch_norm)
event_image = tf.reduce_sum(event_image_loader[:, :, :, :2], axis=-1, keepdims=True)
flow_rgb, flow_norm, flow_ang_rad = flow_viz_tf(flow_dict['flow3'])
color_wheel_rgb = draw_color_wheel_np(args.image_width, args.image_height)
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
saver = tf.train.Saver()
saver.restore(sess, args.load_path)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
max_flow_sum = 0
min_flow_sum = 0
iters = 0
if args.test_plot:
import cv2
cv2.namedWindow('EV-FlowNet Results', cv2.WINDOW_NORMAL)
if args.gt_path:
print("Loading ground truth {}".format(args.gt_path))
gt = np.load(args.gt_path)
gt_timestamps = gt['timestamps']
U_gt_all = gt['x_flow_dist']
V_gt_all = gt['y_flow_dist']
print("Ground truth loaded")
AEE_sum = 0.
percent_AEE_sum = 0.
AEE_list = []
if args.save_test_output:
output_flow_list = []
gt_flow_list = []
event_image_list = []
while not coord.should_stop():
start_time = time.time()
try:
flow_dict_np,\
prev_image,\
next_image,\
event_image,\
image_timestamps = sess.run([flow_dict,
prev_image_loader,
next_image_loader,
event_image_loader,
timestamp_loader])
except tf.errors.OutOfRangeError:
break
network_duration = time.time() - start_time
event_image = np.array(event_image)
pred_flow = np.squeeze(flow_dict_np['flow3'])
max_flow_sum += np.max(pred_flow)
min_flow_sum += np.min(pred_flow)
event_count_image = np.sum(event_image[..., :2], axis=-1)
event_count_image = (event_count_image * 255 / event_count_image.max()).astype(np.uint8)
event_count_image = np.squeeze(event_count_image)
if args.save_test_output:
output_flow_list.append(pred_flow)
event_image_list.append(event_count_image)
if args.gt_path:
U_gt, V_gt = estimate_corresponding_gt_flow(U_gt_all, V_gt_all,
gt_timestamps,
image_timestamps[0][0],
image_timestamps[0][1])
gt_flow = np.stack((U_gt, V_gt), axis=2)
if args.save_test_output:
gt_flow_list.append(gt_flow)
image_size = pred_flow.shape
full_size = gt_flow.shape
xsize = full_size[1]
ysize = full_size[0]
xcrop = image_size[1]
ycrop = image_size[0]
xoff = (xsize - xcrop) // 2
yoff = (ysize - ycrop) // 2
gt_flow = gt_flow[yoff:-yoff, xoff:-xoff, :]
# Calculate flow error.
AEE, percent_AEE, n_points = flow_error_dense(gt_flow,
pred_flow,
event_count_image,
'outdoor' in args.test_sequence)
AEE_list.append(AEE)
AEE_sum += AEE
percent_AEE_sum += percent_AEE
iters += 1
if iters % 100 == 0:
print('-------------------------------------------------------')
print('Iter: {}, time: {:f}, run time: {:.3f}s\n'
'Mean max flow: {:.2f}, mean min flow: {:.2f}'
.format(iters, image_timestamps[0][0], network_duration,
max_flow_sum / iters, min_flow_sum / iters))
if args.gt_path:
print('Mean AEE: {:.2f}, mean %AEE: {:.2f}, # pts: {:.2f}'
.format(AEE_sum / iters,
percent_AEE_sum / iters,
n_points))
# Prep outputs for nice visualization.
if args.test_plot:
pred_flow_rgb = flow_viz_np(pred_flow[..., 0], pred_flow[..., 1])
pred_flow_rgb = drawImageTitle(pred_flow_rgb, 'Predicted Flow')
event_time_image = np.squeeze(np.amax(event_image[..., 2:], axis=-1))
event_time_image = (event_time_image * 255 / event_time_image.max()).astype(np.uint8)
event_time_image = np.tile(event_time_image[..., np.newaxis], [1, 1, 3])
event_count_image = np.tile(event_count_image[..., np.newaxis], [1, 1, 3])
event_time_image = drawImageTitle(event_time_image, 'Timestamp Image')
event_count_image = drawImageTitle(event_count_image, 'Count Image')
prev_image = np.squeeze(prev_image)
prev_image = np.tile(prev_image[..., np.newaxis], [1, 1, 3])
prev_image = drawImageTitle(prev_image, 'Grayscale Image')
gt_flow_rgb = np.zeros(pred_flow_rgb.shape)
errors = np.zeros(pred_flow_rgb.shape)
gt_flow_rgb = drawImageTitle(gt_flow_rgb, 'GT Flow - No GT')
errors = drawImageTitle(errors, 'Flow Error - No GT')
if args.gt_path:
errors = np.linalg.norm(gt_flow - pred_flow, axis=-1)
errors = (errors * 255. / errors.max()).astype(np.uint8)
errors = np.tile(errors[..., np.newaxis], [1, 1, 3])
errors[event_count_image == 0] = 0
if 'outdoor' in args.test_sequence:
errors[190:, :] = 0
gt_flow_rgb = flow_viz_np(gt_flow[...,0], gt_flow[...,1])
gt_flow_rgb = drawImageTitle(gt_flow_rgb, 'GT Flow')
errors= drawImageTitle(errors, 'Flow Error')
top_cat = np.concatenate([event_count_image, prev_image, pred_flow_rgb], axis=1)
bottom_cat = np.concatenate([event_time_image, errors, gt_flow_rgb], axis=1)
cat = np.concatenate([top_cat, bottom_cat], axis=0)
cat = cat.astype(np.uint8)
cv2.imshow('EV-FlowNet Results', cat)
cv2.waitKey(1)
print('Testing done. ')
if args.gt_path:
print('mean AEE {:02f}, mean %AEE {:02f}'
.format(AEE_sum / iters,
percent_AEE_sum / iters))
if args.save_test_output:
if args.gt_path:
print('Saving data to {}_output_gt.npz'.format(args.test_sequence))
np.savez('{}_output_gt.npz'.format(args.test_sequence),
output_flows=np.stack(output_flow_list, axis=0),
gt_flows=np.stack(gt_flow_list, axis=0),
event_images=np.stack(event_image_list, axis=0))
else:
print('Saving data to {}_output.npz'.format(args.test_sequence))
np.savez('{}_output.npz'.format(args.test_sequence),
output_flows=np.stack(output_flow_list, axis=0),
event_images=np.stack(event_image_list, axis=0))
coord.request_stop()
def main():
args = configs()
args.load_path = tf.train.latest_checkpoint(os.path.join(args.load_path,
args.training_instance))
sess = tf.Session()
event_image_loader, prev_image_loader, next_image_loader, timestamp_loader, n_ima = get_loader(
args.data_path,
1,
args.image_width,
args.image_height,
split='test',
shuffle=False,
sequence=args.test_sequence,
skip_frames=args.test_skip_frames,
time_only=args.time_only,
count_only=args.count_only)
if not args.load_path:
raise Exception("You need to set `load_path` and `training_instance`.")
print("Read {} images".format(n_ima))
test(sess,
args,
event_image_loader,
prev_image_loader,
next_image_loader,
timestamp_loader)
sess.close()
if __name__ == "__main__":
main()