-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_optimizer.py
1265 lines (1088 loc) · 49.4 KB
/
test_optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Base class of optimizer."""
import abc
import re
import tensorflow.compat.v2 as tf
from absl import logging
from keras import backend, initializers
from keras.optimizers.optimizer_v2 import utils as optimizer_utils
from keras.optimizers.schedules import learning_rate_schedule
from keras.utils import tf_utils
# isort: off
from tensorflow.python.util.tf_export import keras_export
from tensorflow.tools.docs import doc_controls
class _BaseOptimizer(tf.__internal__.tracking.AutoTrackable):
"""Optimizer base class, which only supports non-distribute use case."""
def __init__(
self,
name,
weight_decay=None,
clipnorm=None,
clipvalue=None,
global_clipnorm=None,
use_ema=False,
ema_momentum=0.99,
ema_overwrite_frequency=None,
jit_compile=True,
**kwargs,
):
self.name = name
self.weight_decay = weight_decay
self.clipnorm = clipnorm
self.global_clipnorm = global_clipnorm
self.clipvalue = clipvalue
self.use_ema = use_ema
self.jit_compile = jit_compile
if not tf.config.list_physical_devices("GPU"):
# Optimizer only benefits from XLA when training on GPU. So if no
# GPU is found, we turn off XLA.
self.jit_compile = False
if use_ema:
# Verify the arguments related to EMA.
if ema_momentum > 1 or ema_momentum < 0:
raise ValueError(
"`ema_momentum` must be in the range [0, 1]. "
f"Received: ema_momentum={ema_momentum}"
)
if ema_overwrite_frequency and (
not isinstance(ema_overwrite_frequency, int)
or ema_overwrite_frequency < 1
):
raise ValueError(
"`ema_overwrite_frequency` must be an integer > 1 or None. "
"Received: ema_overwrite_frequency="
f"{ema_overwrite_frequency}"
)
self.ema_momentum = ema_momentum
self.ema_overwrite_frequency = ema_overwrite_frequency
if self.clipnorm is not None and self.global_clipnorm is not None:
raise ValueError(
"At most one of `clipnorm` and `global_clipnorm` can "
f"be set. Received: clipnorm={self.clipnorm}, "
f"global_clipnorm={self.global_clipnorm}."
)
self._variables = []
self._create_iteration_variable()
self._process_kwargs(kwargs)
def _create_iteration_variable(self):
"""Create the iterations counter variable."""
with tf.init_scope():
# Lift the variable creation to init scope to avoid environment
# issue.
self._iterations = tf.Variable(
0, name="iteration", dtype=tf.int64, trainable=False
)
self._variables.append(self._iterations)
def _process_kwargs(self, kwargs):
# Remove the `is_legacy_optimizer` arg, which is for serialization only.
kwargs.pop("is_legacy_optimizer", None)
lr = kwargs.pop("lr", None)
if lr:
logging.warning(
"`lr` is deprecated, please use "
"`learning_rate` instead, or use the legacy optimizer, e.g.,"
f"tf.keras.optimizers.legacy.{self.__class__.__name__}."
)
legacy_kwargs = {
"decay",
"gradient_aggregator",
"gradient_transformers",
}
for k in kwargs:
if k in legacy_kwargs:
raise ValueError(
f"{k} is deprecated in the new Keras optimizer, please"
"check the docstring for valid arguments, or use the "
"legacy optimizer, e.g., "
f"tf.keras.optimizers.legacy.{self.__class__.__name__}."
)
else:
raise TypeError(
f"{k} is not a valid argument, kwargs should be empty "
" for `optimizer_experimental.Optimizer`."
)
def _create_or_restore_slot_variable(self, **kwargs):
raise ValueError(
"You are trying to restore a checkpoint from a legacy Keras "
"optimizer into a v2.11+ Optimizer, which can cause "
"errors. Please update the optimizer referenced in your code "
"to be an instance of "
"`tf.keras.optimizers.legacy.Optimizer`, e.g.: "
f"`tf.keras.optimizers.legacy.{self.__class__.__name__}`."
)
def _var_key(self, variable):
"""Get a unique identifier of the given variable."""
# Get the distributed variable if it exists.
# TODO(b/199214315): replace _unique_id with ref() after fixing ref()
# issues on AggregatingVariable.
return variable._unique_id
def _deduplicate_sparse_grad(self, grads):
"""Deduplicate sparse gradient.
For sparse gradients, i.e., gradient is of type `tf.IndexedSlices`,
it is possible that `gradient.indices` has duplicated indices.
This function adds up values for the duplicated indices, and returns
a `tf.IndexedSlices` with indices of unique values.
"""
processed_grads = []
for grad in grads:
if isinstance(grad, tf.IndexedSlices):
values = grad.values
indices = grad.indices
unique_indices, new_index_positions = tf.unique(indices)
summed_values = tf.math.unsorted_segment_sum(
values, new_index_positions, tf.shape(unique_indices)[0]
)
processed_grads.append(
tf.IndexedSlices(
summed_values, unique_indices, grad.dense_shape
)
)
else:
processed_grads.append(grad)
return processed_grads
@abc.abstractmethod
def update_step(self, gradient, variable):
"""Function to update variable value based on given gradients.
This method must be implemented in customized optimizers.
Args:
gradient: backpropagated gradient of the given variable.
variable: variable whose value needs to be updated.
Returns:
An `Operation` that applies the specified gradients.
"""
raise NotImplementedError
@tf.function(jit_compile=True)
def _update_step_xla(self, gradient, variable, key):
"""A wrapper of `update_step` to enable XLA acceleration.
Due to `tf.function` tracing mechanism, for (gradient, variable) pairs
of the same shape and dtype, the execution graph always invoke the first
pair it has seen. Thus, we need a `key` argument to make each (gradient,
variable) pair unique. In additions, XLA cannot understand string input,
so the key is an integer.
Args:
gradient: backpropagated gradient of the given variable.
variable: variable whose value needs to be updated.
key (int): a unique key that identifies the variable.
Returns:
An `Operation` that applies the specified gradients.
"""
return self._update_step(gradient, variable)
def _update_step(self, gradient, variable):
if getattr(variable, "_unique_id", None) is None:
# Variable has no `_unique_id` if called during `model.save()`, in
# which case we do not want to update the variable.
return
if self._var_key(variable) not in self._index_dict:
raise KeyError(
f"The optimizer cannot recognize variable {variable.name}. "
"This usually means you are trying to call the optimizer to "
"update different parts of the model separately. Please call "
"`optimizer.build(variables)` with the full list of trainable "
"variables before the training loop or use legacy optimizer "
"`tf.keras.optimizers.legacy.{self.__class__.__name__}."
)
self.update_step(gradient, variable)
def compute_gradients(self, loss, var_list, tape=None):
"""Compute gradients of loss on trainable variables.
Args:
loss: `Tensor` or callable. If a callable, `loss` should take no
arguments and return the value to minimize.
var_list: list or tuple of `Variable` objects to update to minimize
`loss`, or a callable returning the list or tuple of `Variable`
objects. Use callable when the variable list would otherwise be
incomplete before `minimize` since the variables are created at the
first time `loss` is called.
tape: (Optional) `tf.GradientTape`. If `loss` is provided as a
`Tensor`, the tape that computed the `loss` must be provided.
Returns:
A list of (gradient, variable) pairs. Variable is always present, but
gradient can be `None`.
"""
if not callable(loss) and tape is None:
raise ValueError(
"`tape` is required when a `Tensor` loss is passed. "
f"Received: loss={loss}, tape={tape}."
)
if tape is None:
tape = tf.GradientTape()
if callable(loss):
with tape:
if not callable(var_list):
tape.watch(var_list)
loss = loss()
if callable(var_list):
var_list = var_list()
grads = tape.gradient(loss, var_list)
return list(zip(grads, var_list))
def _clip_gradients(self, grads):
clipped_grads = []
if self.clipnorm and self.clipnorm > 0:
for g in grads:
if g is None:
clipped_grads.append(g)
else:
clipped_grads.append(tf.clip_by_norm(g, self.clipnorm))
return clipped_grads
if self.global_clipnorm and self.global_clipnorm > 0:
return tf.clip_by_global_norm(grads, self.global_clipnorm)[0]
if self.clipvalue and self.clipvalue > 0:
for g in grads:
if g is None:
clipped_grads.append(g)
else:
clipped_grads.append(
tf.clip_by_value(
g,
clip_value_min=-self.clipvalue,
clip_value_max=self.clipvalue,
)
)
return clipped_grads
return grads
@property
def iterations(self):
"""The number of training steps this `optimizer` has run.
By default, iterations would be incremented by one every time
`apply_gradients()` is called.
"""
return self._iterations
@iterations.setter
def iterations(self, variable):
if getattr(self, "_built", False):
raise RuntimeError(
"Cannot set `iterations` to a new Variable after "
"the Optimizer weights have been created. Here it is "
f"attempting to set `iterations` to {variable}."
"Usually this means you are trying to set `iterations`"
" after calling `apply_gradients()`. Please set "
"`iterations` before calling `apply_gradients()`."
)
self._iterations = variable
@property
def learning_rate(self):
if not hasattr(self, "_learning_rate") or self._learning_rate is None:
raise ValueError(
"Missing learning rate, please set self.learning_rate at"
" optimizer creation time."
)
lr = self._learning_rate
if isinstance(lr, learning_rate_schedule.LearningRateSchedule):
# If the optimizer takes in LearningRateSchedule, then each call to
# learning_rate would return `self._current_learning_rate`, which is
# updated at each call to `apply_gradients`.
return self._current_learning_rate
return lr
@learning_rate.setter
def learning_rate(self, learning_rate):
if isinstance(
learning_rate, learning_rate_schedule.LearningRateSchedule
):
self._learning_rate = learning_rate
else:
if isinstance(
self._learning_rate, learning_rate_schedule.LearningRateSchedule
):
raise TypeError(
"This optimizer was created with a `LearningRateSchedule`"
" object as its `learning_rate` constructor argument, "
"hence its learning rate is not settable. If you need the"
" learning rate to be settable, you should instantiate "
"the optimizer with a float `learning_rate` argument."
)
self._learning_rate.assign(learning_rate)
@property
@doc_controls.do_not_generate_docs
def lr(self):
"""Alias of `learning_rate()`.
`lr()` is heavily called in workflows using `optimizer_v2.OptimizerV2`,
so we keep it for backward compabitliy.
"""
return self.learning_rate
@lr.setter
def lr(self, learning_rate):
self.learning_rate = learning_rate
def _build_learning_rate(self, learning_rate):
with tf.init_scope():
if isinstance(
learning_rate, learning_rate_schedule.LearningRateSchedule
):
# Create a variable to hold the current learning rate.
current_learning_rate = tf.convert_to_tensor(
learning_rate(self.iterations)
)
self._current_learning_rate = tf.Variable(
current_learning_rate,
name="current_learning_rate",
dtype=current_learning_rate.dtype,
trainable=False,
)
return learning_rate
return tf.Variable(
learning_rate,
name="learning_rate",
dtype=backend.floatx(),
trainable=False,
)
@abc.abstractmethod
def build(self, var_list):
"""Initialize the optimizer's variables, such as momemtum variables.
This function has to be implemented by subclass optimizers, and subclass
optimizers need to call `super().build(var_list)`.
Args:
var_list: List of model variables to build optimizers on. For example,
SGD optimizer with momentum will store one momentum variable
corresponding to each model variable.
"""
if getattr(self, "_built", False):
return
self._build_index_dict(var_list)
if self.use_ema:
self._model_variables_moving_average = []
for var in var_list:
# Make a copy of the model variables, we will use the copy to
# store the moving average of model variables.
self._model_variables_moving_average.append(
self.add_variable_from_reference(
var, "average", initial_value=var
)
)
def _build_index_dict(self, var_list):
"""Build variable to index dictionary.
Build a dictionary that maps variable to the index of it in the given
var_list.
Args:
var_list: List of variables to build index dict on.
Returns:
None
"""
self._index_dict = {}
for i, var in enumerate(var_list):
var_key = self._var_key(var)
self._index_dict[var_key] = i
def add_variable(self, shape, dtype=None, initializer="zeros", name=None):
"""Create an optimizer variable.
Args:
shape: A list of integers, a tuple of integers, or a 1-D Tensor of
type int32. Defaults to scalar if unspecified.
dtype: The DType of the optimizer variable to be created. Defaults to
`tf.keras.backend.floatx` if unspecified.
initializer: string or callable. Initializer instance.
name: The name of the optimizer variable to be created.
Returns:
An optimizer variable, in the format of tf.Variable.
"""
if isinstance(initializer, str):
initializer = initializers.get(initializer)
if dtype is None:
dtype = backend.floatx()
if shape is None:
shape = []
variable = tf.Variable(
initial_value=initializer(shape, dtype), name=name, trainable=False
)
self._variables.append(variable)
return variable
def add_variable_from_reference(
self, model_variable, variable_name, shape=None, initial_value=None
):
"""Create an optimizer variable from model variable.
Create an optimizer variable based on the information of model variable.
For example, in SGD optimizer momemtum, for each model variable, a
corresponding momemtum variable is created of the same shape and dtype.
Args:
model_variable: tf.Variable. The corresponding model variable to the
optimizer variable to be created.
variable_name: String. The name prefix of the optimizer variable to be
created. The create variables name will follow the pattern
`{variable_name}/{model_variable.name}`, e.g., `momemtum/dense_1`.
shape: List or Tuple, defaults to None. The shape of the optimizer
variable to be created. If None, the created variable will have the
same shape as `model_variable`.
initial_value: A Tensor, or Python object convertible to a Tensor,
defaults to None. The initial value of the optimizer variable, if
None, the initial value will be default to 0.
Returns:
An optimizer variable.
"""
if initial_value is None:
if shape is None:
if model_variable.shape.rank is None:
# When the rank is None, we cannot get a concrete
# `model_variable.shape`, we use dynamic shape.
initial_value = tf.zeros_like(
model_variable, dtype=model_variable.dtype
)
else:
# We cannot always use `zeros_like`, because some cases
# the shape exists while values don't.
initial_value = tf.zeros(
model_variable.shape, dtype=model_variable.dtype
)
else:
initial_value = tf.zeros(shape, dtype=model_variable.dtype)
variable = tf.Variable(
initial_value=initial_value,
name=f"{variable_name}/{model_variable._shared_name}",
dtype=model_variable.dtype,
trainable=False,
)
self._variables.append(variable)
return variable
def minimize(self, loss, var_list, tape=None):
"""Minimize `loss` by updating `var_list`.
This method simply computes gradient using `tf.GradientTape` and calls
`apply_gradients()`. If you want to process the gradient before applying
then call `tf.GradientTape` and `apply_gradients()` explicitly instead
of using this function.
Args:
loss: `Tensor` or callable. If a callable, `loss` should take no
arguments and return the value to minimize.
var_list: list or tuple of `Variable` objects to update to minimize
`loss`, or a callable returning the list or tuple of `Variable`
objects. Use callable when the variable list would otherwise be
incomplete before `minimize` since the variables are created at the
first time `loss` is called.
tape: (Optional) `tf.GradientTape`.
Returns:
None
"""
grads_and_vars = self.compute_gradients(loss, var_list, tape)
self.apply_gradients(grads_and_vars)
def _compute_current_learning_rate(self):
if isinstance(
self._learning_rate, learning_rate_schedule.LearningRateSchedule
):
# Compute the current learning rate at the beginning of variable
# update.
if hasattr(self, "_current_learning_rate"):
self._current_learning_rate.assign(
self._learning_rate(self.iterations)
)
else:
current_learning_rate = tf.convert_to_tensor(
self._learning_rate(self.iterations)
)
self._current_learning_rate = tf.Variable(
current_learning_rate,
name="current_learning_rate",
dtype=current_learning_rate.dtype,
trainable=False,
)
def exclude_from_weight_decay(self, var_list=None, var_names=None):
"""Exclude variables from weight decay.
This method must be called before the optimizer's `build` method is
called. You can set specific variables to exclude out, or set a list of
strings as the anchor words, if any of which appear in a variable's
name, then the variable is excluded.
Args:
var_list: A list of `tf.Variable`s to exclude from weight decay.
var_names: A list of strings. If any string in `var_names` appear
in the model variable's name, then this model variable is
excluded from weight decay. For example, `var_names=['bias']`
excludes all bias variables from weight decay.
"""
if hasattr(self, "_built") and self._built:
raise ValueError(
"`exclude_from_weight_decay()` can only be configued before "
"the optimizer is built."
)
if var_list:
self._exclude_from_weight_decay = [
self._var_key(variable) for variable in var_list
]
else:
self._exclude_from_weight_decay = []
self._exclude_from_weight_decay_names = var_names or []
def _use_weight_decay(self, variable):
exclude_from_weight_decay = getattr(
self, "_exclude_from_weight_decay", []
)
exclude_from_weight_decay_names = getattr(
self, "_exclude_from_weight_decay_names", []
)
variable_id = self._var_key(variable)
for exclude_id in exclude_from_weight_decay:
if variable_id == exclude_id:
return False
for name in exclude_from_weight_decay_names:
if re.search(name, variable.name) is not None:
return False
return True
def apply_gradients(self, grads_and_vars, name=None):
"""Apply gradients to variables.
Args:
grads_and_vars: List of `(gradient, variable)` pairs.
name: string, defaults to None. The name of the namescope to
use when creating variables. If None, `self.name` will be used.
Returns:
A `tf.Variable`, representing the current iteration.
Raises:
TypeError: If `grads_and_vars` is malformed.
"""
self._compute_current_learning_rate()
grads_and_vars = list(grads_and_vars)
if len(grads_and_vars) == 0:
# It is possible that the grad is empty. In this case,
# `apply_gradients` is a no-op.
return self._iterations
grads, trainable_variables = zip(*grads_and_vars)
scope_name = name or self.name or "optimizer"
with tf.name_scope(scope_name):
with tf.init_scope():
# Lift variable creation to init scope to avoid environment
# issues.
self.build(trainable_variables)
grads_and_vars = list(zip(grads, trainable_variables))
grads_and_vars = optimizer_utils.filter_empty_gradients(grads_and_vars)
if len(list(grads_and_vars)) == 0:
# Check again after filtering gradients.
return self._iterations
grads, trainable_variables = zip(*grads_and_vars)
grads = self._clip_gradients(grads)
grads = self._deduplicate_sparse_grad(grads)
self._apply_weight_decay(trainable_variables)
grads_and_vars = list(zip(grads, trainable_variables))
iteration = self._internal_apply_gradients(grads_and_vars)
# Apply variable constraints after applying gradients.
for variable in trainable_variables:
if variable.constraint is not None:
variable.assign(variable.constraint(variable))
return iteration
def _apply_weight_decay(self, variables):
if self.weight_decay is None:
return
for variable in variables:
if self._use_weight_decay(variable):
lr = tf.cast(self.learning_rate, variable.dtype)
wd = tf.cast(self.weight_decay, variable.dtype)
variable.assign_sub(variable * wd * lr)
def _internal_apply_gradients(self, grads_and_vars):
"""Helper function of apply gradients.
This is required for separating out distributed training logic.
Args:
grads_and_vars: List of (gradient, variable) pairs.
"""
if self.jit_compile:
for grad, var in grads_and_vars:
self._update_step_xla(grad, var, id(self._var_key(var)))
else:
for grad, var in grads_and_vars:
self._update_step(grad, var)
return self.iterations.assign_add(1)
def _update_model_variables_moving_average(self, var_list):
"""Update the stored moving average using the latest value."""
if self.use_ema:
for var, average in zip(
var_list, self._model_variables_moving_average
):
average.assign(
self.ema_momentum * average + (1 - self.ema_momentum) * var
)
def _overwrite_model_variables_with_average_value(self, var_list):
"""Overwrite model variables with its moving average."""
if len(var_list) != len(self._model_variables_moving_average):
raise ValueError(
f"The length of model variables ({len(var_list)}) to "
"override does not match the length of model variables "
"stored in the optimizer "
f"({len(self._model_variables_moving_average)}). Please "
"check if the optimizer was called on your model."
)
self._overwrite_model_variables_with_average_value_helper(var_list)
def _overwrite_model_variables_with_average_value_helper(self, var_list):
"""Helper function that overwrites model variables."""
for var, average_var in zip(
var_list, self._model_variables_moving_average
):
var.assign(average_var)
def finalize_variable_values(self, var_list):
"""Set the final value of model's trainable variables.
Sometimes there are some extra steps before ending the variable updates,
such as overriding the model variables with its average value.
Args:
var_list: list of model variables.
"""
if self.use_ema:
# If the optimizer uses EMA, then when finalizing, we replace the
# model variable value with its moving average stored inside
# optimizer.
self._overwrite_model_variables_with_average_value(var_list)
def _serialize_hyperparameter(self, hyperparameter):
"""Serialize a hyperparameter that can be a numeric or callable."""
if isinstance(
hyperparameter, learning_rate_schedule.LearningRateSchedule
):
return learning_rate_schedule.serialize(hyperparameter)
if isinstance(hyperparameter, tf.Variable):
return hyperparameter.numpy()
if callable(hyperparameter):
return hyperparameter()
return hyperparameter
def get_config(self):
"""Returns the config of the optimizer.
An optimizer config is a Python dictionary (serializable)
containing the configuration of an optimizer.
The same optimizer can be reinstantiated later
(without any saved state) from this configuration.
Subclass optimizer should override this method to include other
hyperparameters.
Returns:
Python dictionary.
"""
config = {
"name": self.name,
"weight_decay": self.weight_decay,
"clipnorm": self.clipnorm,
"global_clipnorm": self.global_clipnorm,
"clipvalue": self.clipvalue,
"use_ema": self.use_ema,
"ema_momentum": self.ema_momentum,
"ema_overwrite_frequency": self.ema_overwrite_frequency,
"jit_compile": self.jit_compile,
"is_legacy_optimizer": False,
}
return config
@classmethod
def from_config(cls, config, custom_objects=None):
"""Creates an optimizer from its config.
This method is the reverse of `get_config`, capable of instantiating the
same optimizer from the config dictionary.
Args:
config: A Python dictionary, typically the output of get_config.
custom_objects: A Python dictionary mapping names to additional
user-defined Python objects needed to recreate this optimizer.
Returns:
An optimizer instance.
"""
if "learning_rate" in config:
if isinstance(config["learning_rate"], dict):
config["learning_rate"] = learning_rate_schedule.deserialize(
config["learning_rate"], custom_objects=custom_objects
)
return cls(**config)
def variables(self):
"""Returns variables of this optimizer."""
return self._variables
def set_weights(self, weights):
"""Set the weights of the optimizer.
Args:
weights: a list of `tf.Variable`s or numpy arrays, the target values
of optimizer variables. It should have the same order as
`self._variables`.
"""
if not getattr(self, "_built", False):
raise ValueError(
"You are calling `set_weights()` on an optimizer that has not "
"yet been built. Please call "
"`optimizer.build(trainable_variables)` to create the "
"optimizer weights before calling `set_weights()`."
)
for variable, weight in zip(self._variables, weights):
if variable.shape != weight.shape:
raise ValueError(
f"Optimizer variable {self._var_key(variable)} has shape "
f"{str(variable.shape)} not compatible with provided "
f"weight shape {str(weight.shape)}."
)
variable.assign(weight)
def _save_own_variables(self, store):
"""Get the state of this optimizer object."""
for i, variable in enumerate(self.variables()):
store[str(i)] = variable.numpy()
def _load_own_variables(self, store):
"""Set the state of this optimizer object."""
for i, variable in enumerate(self.variables()):
variable.assign(store[str(i)])
base_optimizer_keyword_args = """name: String. The name to use
for momentum accumulator weights created by
the optimizer.
weight_decay: Float, defaults to None. If set, weight decay is applied.
clipnorm: Float. If set, the gradient of each weight is individually
clipped so that its norm is no higher than this value.
clipvalue: Float. If set, the gradient of each weight is clipped to be no
higher than this value.
global_clipnorm: Float. If set, the gradient of all weights is clipped so
that their global norm is no higher than this value.
use_ema: Boolean, defaults to False. If True, exponential moving average
(EMA) is applied. EMA consists of computing an exponential moving
average of the weights of the model (as the weight values change after
each training batch), and periodically overwriting the weights with
their moving average.
ema_momentum: Float, defaults to 0.99. Only used if `use_ema=True`. This is # noqa: E501
the momentum to use when computing the EMA of the model's weights:
`new_average = ema_momentum * old_average + (1 - ema_momentum) *
current_variable_value`.
ema_overwrite_frequency: Int or None, defaults to None. Only used if
`use_ema=True`. Every `ema_overwrite_frequency` steps of iterations, we
overwrite the model variable by its moving average. If None, the optimizer # noqa: E501
does not overwrite model variables in the middle of training, and you
need to explicitly overwrite the variables at the end of training
by calling `optimizer.finalize_variable_values()` (which updates the model # noqa: E501
variables in-place). When using the built-in `fit()` training loop, this
happens automatically after the last epoch, and you don't need to do
anything.
jit_compile: Boolean, defaults to True. If True, the optimizer will use XLA # noqa: E501
compilation. If no GPU device is found, this flag will be ignored.
**kwargs: keyword arguments only used for backward compatibility."""
@keras_export(
"keras.optimizers.Optimizer",
"keras.optimizers.experimental.Optimizer",
v1=[],
)
class Optimizer(_BaseOptimizer):
"""Abstract optimizer base class.
This class supports distributed training. If you want to implement your own
optimizer, please subclass this class instead of _BaseOptimizer.
Args:
{{base_optimizer_keyword_args}}
### Usage
```python
# Create an optimizer with the desired parameters.
opt = tf.keras.optimizers.experimental.SGD(learning_rate=0.1)
var1, var2 = tf.Variable(1.0), tf.Variable(2.0)
# `loss` is a callable that takes no argument and returns the value
# to minimize.
loss = lambda: 3 * var1 * var1 + 2 * var2 * var2
# Call minimize to update the list of variables.
opt.minimize(loss, var_list=[var1, var2])
```
### Processing gradients before applying them
Calling `minimize()` takes care of both computing the gradients and
applying them to the variables. If you want to process the gradients
before applying them you can instead use the optimizer in three steps:
1. Compute the gradients with `tf.GradientTape`.
2. Process the gradients as you wish.
3. Apply the processed gradients with `apply_gradients()`.
Example:
```python
# Create an optimizer.
opt = tf.keras.optimizers.experimental.SGD(learning_rate=0.1)
var1, var2 = tf.Variable(1.0), tf.Variable(2.0)
# Compute the gradients for a list of variables.
with tf.GradientTape() as tape:
loss = 3 * var1 * var1 + 2 * var2 * var2
grads = tape.gradient(loss, [var1, var2])
# Process the gradients.
grads[0] = grads[0] + 1
# Ask the optimizer to apply the gradients on variables.
opt.apply_gradients(zip(grads, [var1, var2]))
```
### Dynamic learning rate
Dynamic learning rate can be achieved by setting learning rate as a built-in
or customized `tf.keras.optimizers.schedules.LearningRateSchedule`.
Example:
>>> var = tf.Variable(np.random.random(size=(1,)))
>>> learning_rate = tf.keras.optimizers.schedules.ExponentialDecay(
... initial_learning_rate=.01, decay_steps=20, decay_rate=.1)
>>> opt = tf.keras.optimizers.experimental.SGD(learning_rate=learning_rate)
>>> loss = lambda: 3 * var
>>> opt.minimize(loss, var_list=[var])
### Gradients clipping
Users can clip the gradients before applying to variables by setting
`clipnorm`, `clipvalue` and `global_clipnorm`. Notice that `clipnorm` and
`global_clipnorm` can only have one being set.
Example:
>>> opt = tf.keras.optimizers.experimental.SGD(learning_rate=1, clipvalue=1)
>>> var1, var2 = tf.Variable(2.0), tf.Variable(2.0)
>>> with tf.GradientTape() as tape:
... loss = 2 * var1 + 2 * var2
>>> grads = tape.gradient(loss, [var1, var2])
>>> print([grads[0].numpy(), grads[1].numpy()])
[2.0, 2.0]
>>> opt.apply_gradients(zip(grads, [var1, var2]))
>>> # Without clipping, we should get [0, 0], but as gradients are clipped
>>> # to have max value 1, we get [1.0, 1.0].
>>> print([var1.numpy(), var2.numpy()])
[1.0, 1.0]
### Using weight decay.
Weight decay in certain scenarios can boost the model's performance. Keras
has built-in support for weight decay in all optimizers. Users can apply
weight decay by setting `weight_decay` argument.
>>> opt = tf.keras.optimizers.experimental.SGD(1, weight_decay=0.004)
>>> grads, var1, var2 = tf.zeros(()), tf.Variable(2.0), tf.Variable(2.0)
>>> # You can exclude variables from weight decay, in this case we
>>> # exclude `var2`.
>>> opt.exclude_from_weight_decay(var_list=[var2])
>>> opt.apply_gradients(zip([grads, grads], [var1, var2]))
>>> print([var1.numpy(), var2.numpy()])
[1.992, 2.0]
### Using exponential moving average.
Empirically it has been found that using the exponential moving average
(EMA) of the trained parameters of a deep network achieves a better
performance than using its trained parameters directly. Keras optimizers
allows users to compute this moving average and overwrite the model
variables at desired time.
Example:
```python
# Create an SGD optimizer with EMA on. `ema_momentum` controls the decay
# rate of the moving average. `ema_momentum=1` means no decay and the stored
# moving average is always model variable's initial value before training.
# Reversely, `ema_momentum=0` is equivalent to not using EMA.
# `ema_overwrite_frequency=3` means every 3 iterations, we overwrite the
# trainable variables with their moving average values.
opt = tf.keras.optimizers.experimental.SGD(
learning_rate=1,
use_ema=True,
ema_momentum=0.5,
ema_overwrite_frequency=3)
var1, var2 = tf.Variable(2.0), tf.Variable(2.0)
with tf.GradientTape() as tape:
loss = var1 + var2
grads = tape.gradient(loss, [var1, var2])
# First iteration: [var1, var2] = [1.0, 1.0]
opt.apply_gradients(zip(grads, [var1, var2]))
print([var1, var2])
# Second iteration: [var1, var2] = [0.0, 0.0]
opt.apply_gradients(zip(grads, [var1, var2]))
print([var1, var2])
# Third iteration, without EMA, we should see [var1, var2] = [-1.0, -1.0],
# but overwriting results in [var1, var2] = [-0.125, -0.125]. The full
# calculation for the moving average of var1 is:
# var1=2*0.5**3+1*(1-0.5)*0.5**2+0*(1-0.5)*0.5**1+(-1)*(1-0.5)=-0.125.
opt.apply_gradients(zip(grads, [var1, var2]))
print([var1, var2])
```
When optimizer is constructed with `use_ema=True`, in custom training loop,
users can explicitly call `finalize_variable_values()` to overwrite
trainable variables with their EMA values. `finalize_variable_values()` is
by default called at the end of `model.fit()`.
### Use with `tf.distribute.Strategy`
This optimizer class is `tf.distribute.Strategy` aware, which means it