-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathworking_with_continuous_rqa.r
228 lines (178 loc) · 7.94 KB
/
working_with_continuous_rqa.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
#### SA Analysis: Continuous RQA Parameter Searching ####
# [MC]: Created new subdirectory 'crqa_results' under 'data' for results!
# set working directory
setwd("./SA_Analysis/")
# read in libraries and functions
source('./lib/functions_and_libraries-SA.R')
library(crqa)
# read in gaze csv of all participants
gaze_data = read.table('./data/downsampled/all_participants-downsampled.csv',
sep=',',header=TRUE)
#### Determine DELAY with average mutual information (AMI) ####
# set maximum AMI
ami.lag.max = 200
# get AMI lag
gaze_data = gaze_data %>%
# group data of each participant
group_by(participant) %>%
# find first local minimum
mutate(ami.loc = first_local_minimum(tseriesChaos::mutual(gaze_diff, lag.max = ami.lag.max, plot = FALSE)))
ami_df = gaze_data %>%
select(participant, ami.loc) %>%
distinct()
#
# test_df = gaze_data %>%
# dplyr::filter(participant == 'sa1_2019-10-31_001-0')
#
# test_ami = tseriesChaos::mutual(test_df$gaze_diff, lag.max = ami.lag.max, plot = TRUE)
# write AMI information to file
write.table(gaze_data %>%
select(participant, ami.loc) %>%
distinct(),
'./data/crqa_results/ami.csv',
sep=',',
row.names=FALSE, col.names=TRUE)
#### Determing embedding dimension with FNN ####
# create empty data frame for saving embed results
embed_results = data.frame()
# set maximum percentage of false nearest neighbors
fnnpercent = 10
# split up data into each participant
participant.dfs = split(gaze_data,
list(gaze_data$participant))
# loop through each participant file to calculate fNN
for (next.participant in participant.dfs) {
# call in the needed data
next_participant = data.frame(next.participant)
# tell us whats up
print(paste0("Beginning fNN calculations for participant ", unique(next_participant$participant)))
# grab unique ami for the participant
next_ami = unique(next_participant$ami.loc)[1]
# calculate false nearest neighbors
fnn = tseriesChaos::false.nearest(series = next_participant$gaze_diff,
m = fnnpercent,
d = next_ami,
t = 1,
rt = 10,
eps = sd(next_participant$gaze_diff) / 10)
fnn = fnn[1,][complete.cases(fnn[1,])]
threshold = as.numeric(fnn[1]/fnnpercent)
# identify the largest dimension after a large drop
embed = max(as.numeric(which(diff(fnn) < -threshold))) + 1
next_participant = next_participant %>%
mutate(embed = embed)
embed_results = rbind.data.frame(embed_results,
next_participant)
}
# save false nearest neighbor calculations to file
write.table(embed_results %>%
select(participant, embed) %>%
distinct(),
'./data/crqa_results/embed.csv', sep=',',row.names=FALSE,col.names=TRUE)
gaze_data = full_join(gaze_data, embed_results)
#### Determine optimal radius ####
# rescale by mean distance
gaze_crqa = gaze_data %>%
dplyr::select(participant, gaze_diff, ami.loc, embed) %>%
group_by(participant) %>%
mutate(rescale.gaze_diff = gaze_diff/mean(gaze_diff))
# create an empty dataframe to hold the parameter information
radius_selection = data.frame(participant = numeric(),
choosen.delay = numeric(),
chosen.embed = numeric(),
chosen.radius = numeric(),
rr = numeric())
# identify radius for calculations
radius.list = seq(.05,.20,by=.05)
# split up data into each participant
participant.dfs = split(gaze_crqa,
list(gaze_crqa$participant))
# cycle through all participants
for (next.particiant in participant.dfs){
# reset `target` variables for new radius (above what RR can be)
from.target = 101
last.from.target = 102
# cycle through radii
for (chosen.radius in radius.list){
# if we're still improving, keep going
if (from.target < last.from.target){
# keep the previous iteration's performance
last.from.target = from.target
# print update
print(paste("Participant ", unique(next.particiant$participant),
": radius ", chosen.radius,sep=""))
# identify parameters
chosen.delay = unique(next.particiant$ami.loc)
chosen.embed = unique(next.particiant$embed)
# run CRQA and grab recurrence rate (RR)
rec_analysis = crqa(next.particiant$rescale.gaze_diff,
next.particiant$rescale.gaze_diff,
delay = chosen.delay,
embed = chosen.embed,
r = chosen.radius,
normalize = 0,
rescale = 0,
mindiagline = 2,
minvertline = 2,
tw = 1,
whiteline = FALSE,
recpt = FALSE)
rr = rec_analysis$RR
det = rec_analysis$DET
meanL = rec_analysis$L
# clear it so we don't take up too much memory (optional)
rm(rec_analysis)
# identify how far off the RR is from our target (5%)
from.target = abs(rr - 5)
# save individual radius calculations
write.table(cbind.data.frame(unique(next.participant$participant),
chosen.delay,
chosen.embed,
chosen.radius,
rr,
det,
meanL,
from.target),
paste('./data/crqa_results/radius_calculations-mean_scaled-r',chosen.radius,'-', unique(next.participont$particiant),'.csv', sep=''),
sep=',',row.names=FALSE,col.names=TRUE)
# append to dataframe
radius_selection = rbind.data.frame(radius_selection,
cbind.data.frame(unique(next.participant$participant),
chosen.delay,
chosen.embed,
chosen.radius,
rr,
det,
meanL,
from.target))
} else {
# if we're no longer improving, break
break
}}}
# save the radius explorations to file
write.table(radius_selection,'./data/crqa_results/radius_calculations-mean_scaled-SA.csv', sep=',',row.names=FALSE,col.names=TRUE)
# let us know when it's finished
beepr::beep("fanfare")
#### Export chosen radii for all participants ####
# load in files
radius_selection = read.table('./data/crqa_results/radius_calculations-mean_scaled-SA.csv',
sep=',',header=TRUE)
# identify the target radii
radius_stats = radius_selection %>% ungroup() %>%
group_by(participant) %>%
dplyr::filter(from.target==min(from.target)) %>%
dplyr::arrange(participant) %>%
dplyr::arrange(desc(from.target)) %>%
slice(1) %>%
distinct()
# join the dataframes
gaze_crqa = full_join(radius_stats,
gaze_crqa,
by = c("participant",
"chosen.embed" = "embed.selected",
"chosen.delay" = "ami.selected"))
# save to files
write.table(gaze_crqa,'./data/crqa_results/crqa_data_and_parameters-SA.csv',
sep=',',row.names=FALSE,col.names=TRUE)
write.table(radius_stats, './data/crqa_results/crqa_parameters-SA.csv',
sep=',',row.names=FALSE,col.names=TRUE)