-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun-sorting.py
104 lines (82 loc) · 3.8 KB
/
run-sorting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
# import libraries that we need
import glob, os, re
import pandas as pd
from lib.export import export_files
from lib.filesearch import find_participants, find_highest_export
# import custom-made functions that we'll need
from lib.sorting import Sorting, process_surfaces, merge_all_dataframes, extract_survey
# set root to current path location
top_root = os.path.join(os.getcwd(), 'data')
# set or create directory for saving logs
savelogs_directory = os.path.join(os.getcwd(), 'data', 'analysis')
if not os.path.exists(savelogs_directory):
os.makedirs(top_root + "/processed")
os.makedirs(top_root + "/analysis")
# keeps track of any issues and saves to file at end
issues = pd.DataFrame(columns=['participant', 'error'])
# read in survey key
survey_key = pd.read_csv('./lib/survey_key-SA.csv')
# figure out the participants in each sub-directory
# each participant = full path to their datafolder
included_participants = find_participants(os.path.join(top_root, "raw"))
# cycle through participants
for next_participant in included_participants:
# set participant's working directories
root = next_participant
containing_directory = os.path.abspath(os.path.join(root, "../"))
# sets participant info for documentation purposes
participant_info = re.sub("_pupil", "",
os.path.split(containing_directory)[1])
# identify log file path
try:
logfile_path = glob.glob(containing_directory + '/*.log')[0]
except IndexError:
# a .log file wasn't found in the participants directory
# aka index [0] doesn't exist, so document issue and continue to next?
issues.append(
{'participant': participant_info,
'error': 'logfile not found/glob list empty'},
ignore_index=True)
continue
try:
infofile_path = glob.glob(containing_directory + './info.csv')[0]
except IndexError:
issues.append(
{'participant': participant_info,
'error': 'info.csv not found/glob list empty'},
ignore_index=True)
continue
# look for the exports folder
exportfolder_path = find_highest_export(os.path.join(root, 'exports'))
# gaze/position file paths
full_gaze_path = glob.glob(exportfolder_path + '/gaze_positions.csv')[0]
gazesurface_path = glob.glob(exportfolder_path + '/surfaces/gaze_positions*.csv')[0]
surfaceevents_path = os.path.join(exportfolder_path, 'surfaces', 'surface_events.csv')
# initialize the Sort class
sort = Sorting(savelogs_directory)
# process the surface file
processed_surfaces = process_surfaces(surfaceevents_path, full_gaze_path)
# process the logfile
[full_logfile, processed_img_logs] = sort.logsort(logfile_path, infofile_path)
# adjust the timestamps for gaze on recognized surfaces
gaze_surface_df = pd.read_csv(gazesurface_path)
gaze_surface_df = sort.adjust_timestamps(gaze_surface_df, processed_img_logs)
# adjust the timestamps for all recorded gaze
processed_surfaces['adjusted_timestamp'] = ((processed_surfaces['gaze_timestamp']
+ sort.offset)
.round(4))
# join the gaze and PsychoPy image log data
gaze_dataframe = merge_all_dataframes(processed_surfaces,
gaze_surface_df,
processed_img_logs)
# extract the survey data
survey_df = extract_survey(full_logfile, survey_key)
# export everything
export_files(participant_info,
top_root,
gaze_dataframe,
survey_df)
# logs issues, if there are any
# right now just for ".log" duplicates, more can be added though
issues.to_csv(top_root + '/issues.csv',
index=None)