-
Notifications
You must be signed in to change notification settings - Fork 70
/
utils.py
32 lines (28 loc) · 984 Bytes
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import torch
from PIL import Image
from torch.autograd import Variable
from torchvision import transforms
import numpy as np
# opens and returns image file as a PIL image (0-255)
def load_image(filename):
img = Image.open(filename)
return img
# assumes data comes in batch form (ch, h, w)
def save_image(filename, data):
std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
img = data.clone().numpy()
img = ((img * std + mean).transpose(1, 2, 0)*255.0).clip(0, 255).astype("uint8")
img = Image.fromarray(img)
img.save(filename)
# Calculate Gram matrix (G = FF^T)
def gram(x):
(bs, ch, h, w) = x.size()
f = x.view(bs, ch, w*h)
f_T = f.transpose(1, 2)
G = f.bmm(f_T) / (ch * h * w)
return G
# using ImageNet values
def normalize_tensor_transform():
return transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])