-
Notifications
You must be signed in to change notification settings - Fork 519
/
Copy pathbenchmark.py
executable file
·252 lines (199 loc) · 9.24 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
#!/usr/bin/env python3
# benchmark a quantized AWQ model
import os
import sys
import time
import json
import datetime
import argparse
import resource
import socket
import threading
import torch
import tinychat
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from accelerate import init_empty_weights, load_checkpoint_and_dispatch
from awq.quantize.quantizer import real_quantize_model_weight
from tinychat.demo import gen_params, stream_output
from tinychat.stream_generators import StreamGenerator
from tinychat.modules import make_quant_norm, make_quant_attn, make_fused_mlp
from tinychat.utils.prompt_templates import get_prompter
# parse command-line arguments
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str, default='', required=True, help="name or path of the huggingface model")
parser.add_argument('--quant', type=str, default='', required=True, help="path to the real AWQ quantized model checkpoint")
parser.add_argument("--prompt", action='append', nargs='*')
# benchmarking options
parser.add_argument("--max-new-tokens", type=int, default=128)
parser.add_argument("--max-num-prompts", type=int, default=None)
parser.add_argument('--save', type=str, default='', help='CSV file to save benchmarking results to')
# quantization options
parser.add_argument('--w_bit', type=int, default=4)
parser.add_argument('--q_group_size', type=int, default=128)
parser.add_argument('--no_zero_point', action='store_true', help="disable zero_point")
parser.add_argument('--no_tinychat_kernels', action='store_true', help="disable tinychat kernels")
#parser.add_argument('--no_tinychat_infer', action='store_true', help="disable tinychat inference")
parser.add_argument('--no_quant', action='store_true', help="disable quantization and use FP16 through transformers")
parser.add_argument('--do_sample', action='store_true')
args = parser.parse_args()
if not args.prompt:
if args.chat: # https://modal.com/docs/guide/ex/vllm_inference
args.prompt = [
"What is the meaning of life?",
"How many points did you list out?",
"What is the weather forecast today?",
"What is the fable involving a fox and grapes?",
"What's a good recipe for making tabouli?",
"What is the product of 9 and 8?",
"If a train travels 120 miles in 2 hours, what is its average speed?",
]
else:
args.prompt = [
"Once upon a time,",
"A great place to live is",
"In a world where dreams are shared,",
"The weather forecast today is",
"Large language models are",
"Space exploration is exciting",
"The history of the Hoover Dam is",
"San Fransisco is a city in",
"To train for running a marathon,",
"A recipe for making tabouli is"
]
else:
args.prompt = [x[0] for x in args.prompt]
print(args)
def load_prompts(prompts):
"""
Load prompts from a list of txt or json files
(or if these are strings, just return the strings)
"""
prompt_list = []
for prompt in prompts:
ext = os.path.splitext(prompt)[1]
if ext == '.json':
with open(prompt) as file:
json_prompts = json.load(file)
for json_prompt in json_prompts:
if isinstance(json_prompt, dict):
prompt_list.append(json_prompt) # json_prompt['text']
elif ifinstance(json_prompt, str):
prompt_list.append(json_prompt)
else:
raise TypeError(f"{type(json_prompt)}")
elif ext == '.txt':
with open(prompt) as file:
prompt_list.append(file.read())
else:
prompt_list.append(prompt)
return prompt_list
args.prompt = load_prompts(args.prompt)
if args.max_num_prompts:
args.prompt = args.prompt[:args.max_num_prompts]
def get_model_name_from_path(model_path):
model_path = model_path.strip("/")
model_paths = model_path.split("/")
if len(model_paths) > 2:
return model_paths[-2] + '/' + model_paths[-1]
else:
return model_paths[-1]
model_name = get_model_name_from_path(args.quant)
# get quantization config (apart from w_bit)
q_config = {
"zero_point": not args.no_zero_point, # by default True
"q_group_size": args.q_group_size, # whether to use group quantization
}
print("Quantization config:", q_config)
# select compute device
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"Running on device {device}")
if args.no_quant:
precision = "fp16"
print(f"Loading model {args.model} without quantization ({precision})")
model = AutoModelForCausalLM.from_pretrained(args.model, torch_dtype=torch.float16).to(device)
else:
print(f"Loading model {args.model} with quantized weights from {args.quant}")
with init_empty_weights():
model = AutoModelForCausalLM.from_pretrained(args.model, torch_dtype=torch.float16)
print(model)
print(f"model device: {model.device}")
# prepare model to apply quantized weights
real_quantize_model_weight(model, w_bit=args.w_bit, q_config=q_config, init_only=True)
# load quantized weights
model = load_checkpoint_and_dispatch(
model, args.quant, device_map='balanced',
no_split_module_classes=["OPTDecoderLayer", "LlamaDecoderLayer"]
)
precision = f"W{args.w_bit}A16"
print(model)
print(f"model device: {model.device}")
if not args.no_tinychat_kernels:
tinychat.utils.constants.max_seq_len = model.config.max_position_embeddings
make_quant_attn(model, device)
make_quant_norm(model)
make_fused_mlp(model)
print("TinyChat model:\n", model)
print(f"Model max context length: {model.config.max_position_embeddings}")
#for name, param in model.named_parameters():
# print(f"{name} {param}")
model.eval()
# create tokenizer
tokenizer = AutoTokenizer.from_pretrained(args.model, use_fast=False)
# benchmark inference
avg_prefill_time = 0
avg_prefill_rate = 0
avg_decode_time = 0
avg_decode_rate = 0
for i, prompt in enumerate(args.prompt):
if isinstance(prompt, dict):
prompt = prompt['text']
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
num_input_tokens = input_ids.shape[-1]
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=False)
time_begin = 0
def generate():
global time_begin
time_begin = time.perf_counter()
with torch.inference_mode():
model.generate(
inputs=input_ids,
do_sample=args.do_sample,
min_new_tokens=args.max_new_tokens,
max_new_tokens=args.max_new_tokens,
streamer=streamer
)
thread = threading.Thread(target=generate)
thread.start()
print(f"Prompt: {prompt}\n")
new_tokens = ''
num_tokens = 0
for token in streamer:
print(token, end='', flush=True)
if num_tokens == 0:
time_first_token=time.perf_counter()
prefill_time=time_first_token - time_begin
time_begin=time_first_token
new_tokens += token
num_tokens += 1
decode_time=time.perf_counter() - time_begin
decode_rate=(args.max_new_tokens-1) / decode_time
prefill_rate=num_input_tokens / prefill_time
print(f"\n\n{model_name}: input={num_input_tokens} output={num_tokens} prefill_time {prefill_time:.3f} sec, prefill_rate {prefill_rate:.1f} tokens/sec, decode_time {decode_time:.3f} sec, decode_rate {decode_rate:.1f} tokens/sec\n")
if i > 0:
avg_factor = 1.0 / (len(args.prompt) - 1)
avg_prefill_time += prefill_time * avg_factor
avg_prefill_rate += prefill_rate * avg_factor
avg_decode_time += decode_time * avg_factor
avg_decode_rate += decode_rate * avg_factor
print(f"AVERAGE OVER {len(args.prompt) - 1} RUNS, input={num_input_tokens}, output={args.max_new_tokens}, precision={precision}")
print(f"{model_name}: prefill_time {avg_prefill_time:.3f} sec, prefill_rate {avg_prefill_rate:.1f} tokens/sec, decode_time {avg_decode_time:.3f} sec, decode_rate {avg_decode_rate:.1f} tokens/sec\n")
memory_usage = (resource.getrusage(resource.RUSAGE_SELF).ru_maxrss + resource.getrusage(resource.RUSAGE_CHILDREN).ru_maxrss) / 1024 # https://stackoverflow.com/a/7669482
print(f"Peak memory usage: {memory_usage:.2f} MB")
if args.save:
if not os.path.isfile(args.save): # csv header
with open(args.save, 'w') as file:
file.write(f"timestamp, hostname, api, model, precision, input_tokens, output_tokens, prefill_time, prefill_rate, decode_time, decode_rate, memory\n")
with open(args.save, 'a') as file:
file.write(f"{datetime.datetime.now().strftime('%Y%m%d %H:%M:%S')}, {socket.gethostname()}, {'tinychat' if not args.no_tinychat_kernels else 'awq'}, ")
file.write(f"{model_name}, {precision}, {num_input_tokens}, {args.max_new_tokens}, ")
file.write(f"{avg_prefill_time}, {avg_prefill_rate}, {avg_decode_time}, {avg_decode_rate}, {memory_usage}\n")