title | tags | |
---|---|---|
Solving the EEG forward problem using BEM and FEM |
|
The aim of this tutorial is to solve the EEG forward problem using two different numerical methods, namely the Boundary Element Method (BEM) and the Finite Element Method (FEM).
{% include /shared/tutorial/sourcelocalization_background.md %}
As already mentioned, the goal of this session is to solve the EEG forward problem, more precisely we want to compute EEG leadfields so that the inverse problem can be solved in the next session (inverse problem). In order to compute leadfields, there are 9 main steps that have to be followed.
- Load and read the anatomical data, namely a T1-MRI (ft_read_mri);
- Align the MRI to the electrodes. As the electrodes are expressed in the CTF coordinate system, we translate the MRI in the CTF coordinate system (ft_volumerealign);
- Reslice the MRI image so that the voxels of the anatonical data are homogeneous (i.e. the size of the voxel is the same into each direction). This step will facilitate the segmentation step. (ft_volumereslice)
- Segment the MRI: 3 compartments for BEM (scalp, skull, brain) and 5 compartments for FEM (scalp, skull, CSF, grey matter and white matter) (ft_volumesegment);
- then we create the mesh: triangulated surface mesh for BEM and hexahedral volume mesh for FEM (ft_prepare_mesh).
- Create the headmodels (headmodel_bem and headmodel_fem) where geometrical and electrical information are merged together (ft_prepare_headmodel);
- Align the electrodes to the MRI (ft_electroderealign);
- The sourcemodel is created, where the location of the sources is restrained to the brain compartment (from the BEM mesh) (ft_prepare_sourcemodel);
- Leadfields can be computed (ft_prepare_leadfield).
The first 3 steps are the same for BEM and FEM. Steps from 4 to 8 differ between BEM and FEM. A more detailed description of these steps is following.
{% include image src="/assets/img/workshop/baci2017/forwardproblem/scheme.png" %} Figure1: pipeline for forward computation, in the blue box there are the steps which differ between BEM and FEM
mri_orig = ft_read_mri('subject01.nii');
Visualize the MRI
cfg=[];
ft_sourceplot(cfg,mri_orig);
{% include image src="/assets/img/workshop/baci2017/forwardproblem/mri_orig.png" %} Figure2: visualization of the MRI
In this step we will interactively align the MRI to the CTF space. We will be asked to identify the three CTF landmarks (nasion, NAS; right pre-auricular point, RPA; left pre-auricular point, LPA) in the MRI.
cfg = [];
cfg.method = 'interactive';
cfg.coordsys = 'ctf';
mri_realigned = ft_volumerealign(cfg, mri_orig);
We can visualize the realigned MRI
cfg = [];
ft_sourceplot(cfg, mri_realigned);
{% include image src="/assets/img/workshop/baci2017/forwardproblem/mri_resliced.png" %} Figure3: visualization of the realigned MRI
cfg = [];
mri_resliced = ft_volumereslice(cfg, mri_realigned);
We can visualize the resliced MRI
cfg = [];
ft_sourceplot(cfg, mri_resliced);
cfg = [];
cfg.output = {'brain','skull', 'scalp'};
mri_segmented_3_compartment = ft_volumesegment(cfg, mri_resliced);
Visualize the segmentation
seg_i = ft_datatype_segmentation(mri_segmented_3_compartment,'segmentationstyle','indexed');
cfg = [];
cfg.funparameter = 'seg';
cfg.funcolormap = gray(4); % distinct color per tissue
cfg.location = 'center';
cfg.atlas = seg_i;
ft_sourceplot(cfg, seg_i);
{% include image src="/assets/img/workshop/baci2017/forwardproblem/mri_segmented_bem.png" %} Figure4: 3 compartment segmentation output
cfg = [];
cfg.tissue = {'brain','skull','scalp'};
cfg.numvertices = [3000 2000 1000];
mesh_bem=ft_prepare_mesh(cfg,mri_segmented_3_compartment);
Visualize the mesh and the electrode
load elec; %load the electrodes
figure, ft_plot_mesh(mesh_bem(1),'surfaceonly','yes','vertexcolor','none','facecolor',...
'skin','facealpha',0.5,'edgealpha',0.1)
ft_plot_mesh(mesh_bem(2),'surfaceonly','yes','vertexcolor','none','facecolor',...
'skin','facealpha',0.5,'edgealpha',0.1)
ft_plot_mesh(mesh_bem(3),'surfaceonly','yes','vertexcolor','none','facecolor',...
'skin','facealpha',0.5,'edgealpha',0.1)
hold on, ft_plot_sens(elec, 'style', '*g');
{% include image src="/assets/img/workshop/baci2017/forwardproblem/mesh_bem_elec.png" %} Figure5: 3 compartment mesh with electrodes
cfg = [];
cfg.method ='dipoli'; % You can also specify 'bemcp', or another method.
headmodel_bem = ft_prepare_headmodel(cfg, mesh_bem);
{% include markup/danger %} In Windows the method 'dipoli' does not work. You can either load "headmodel_bem" and continue with this tutorial, or explore other BEM method like 'bemcp'. If you use 'bemcp', the conductivity field has a different order: {'brain', 'skull', 'skin'}. {% include markup/end %}
If the electrodes are not well aligned with the mesh, we can realign them with:
cfg = [];
cfg.method = 'interactive';
cfg.elec = elec;
cfg.headshape = headmodel_bem.bnd;
elec = ft_electroderealign(cfg);
Check the alignment visually.
figure;
ft_plot_axes(mesh_bem)
hold on;
ft_plot_mesh(mesh_bem.bnd(1),'surfaceonly','yes','vertexcolor','none','facecolor',...
'skin','facealpha',0.5,'edgealpha',0.1)
ft_plot_sens(elec,'style', '.k');
{% include image src="/assets/img/workshop/baci2017/forwardproblem/aligned.png" %} Figure6: mesh, electrodes and axes.
cfg = [];
cfg.resolution = 7.5;
cfg.threshold = 0.1;
cfg.smooth = 5;
cfg.headmodel = headmodel_bem;
cfg.inwardshift = 1; %shifts dipoles away from surfaces
sourcemodel = ft_prepare_sourcemodel(cfg);
Visualize the sourcemodel
figure, ft_plot_mesh(sourcemodel.pos(sourcemodel.inside,:))
hold on, ft_plot_mesh(mesh_bem.bnd(1),'surfaceonly','yes','vertexcolor','none','facecolor',...
'skin','facealpha',0.5,'edgealpha',0.1)
{% include image src="/assets/img/workshop/baci2017/forwardproblem/sourcemodel_all.png" %} Figure7: sourcemodel on the brain compartment
Save the sourcemode
save sourcemodel sourcemodel;
cfg = [];
cfg.grid = sourcemodel;
cfg.headmodel= headmodel_bem;
cfg.elec = elec;
cfg.reducerank = 3;
leadfield_bem = ft_prepare_leadfield(cfg);
cfg = [];
cfg.output = {'scalp','skull','csf','gray','white'};
cfg.brainsmooth = 1;
cfg.scalpthreshold = 0.11;
cfg.skullthreshold = 0.15;
cfg.brainthreshold = 0.15;
mri_segmented_5_compartment = ft_volumesegment(cfg, mri_resliced);
Visualize the segmentation result
seg_i = ft_datatype_segmentation(mri_segmented_5_compartment,'segmentationstyle','indexed');
cfg = [];
cfg.funparameter = 'seg';
cfg.funcolormap = gray(5); % distinct color per tissue
cfg.location = 'center';
cfg.atlas = seg_i; % the segmentation can also be used as atlas
ft_sourceplot(cfg, seg_i);
{% include image src="/assets/img/workshop/baci2017/forwardproblem/mri_segmented_fem.png" %} _Figure8: 5 compartment segmentation output _
cfg = [];
cfg.shift = 0.3;
cfg.method = 'hexahedral';
cfg.resolution = 1; % this is in mm
mesh_fem = ft_prepare_mesh(cfg,mri_segmented_5_compartment);
cfg = [];
cfg.method = 'simbio';
cfg.conductivity = [0.43 0.0024 1.79 0.14 0.33]; % same as tissuelabel in vol_simbio
cfg.tissuelabel = {'scalp', 'skull', 'csf', 'gray','white'};
headmodel_fem = ft_prepare_headmodel(cfg, mesh_fem);
Visualize the headmodel and the electrodes (it might take time and memory)
% csf: 1, gm: 2, scalp: 3, skull: 4, wm: 5
ts = 3;
figure
mesh2 =[];
mesh2.hex = headmodel_fem.hex(headmodel_fem.tissue==ts,:); %mesh2.hex(1:size(mesh2.hex),:);
mesh2.pos = headmodel_fem.pos;
mesh2.tissue = headmodel_fem.tissue(headmodel_fem.tissue==ts,:); %mesh.tissue(1:size(mesh2.hex),:);
mesh_ed = mesh2edge(mesh2);
patch('Faces',mesh_ed.poly,...
'Vertices',mesh_ed.pos,...
'FaceAlpha',.5,...
'LineStyle','none',...
'FaceColor',[1 1 1],...
'FaceLighting','gouraud');
xlabel('coronal');
ylabel('sagital');
zlabel('axial')
camlight;
axis on;
ft_plot_sens(elec, 'style', '*g');
{% include image src="/assets/img/workshop/baci2017/forwardproblem/mesh_fem_elec.png" %} Figure9: visualization of headmodel_fem and electrodes
If the electrodes are not well aligned with the mesh, we can realign them with:
cfg = [];
cfg.method = 'interactive';
cfg.elec = elec;
cfg.headshape = headmodel_fem;
elec = ft_electroderealign(cfg);
We will use the sourcemodel already generated in 7A.
load('sourcemodel.mat');
{% include markup/danger %} Please DO NOT run ft_prepare_vol_sens in this tutorial session! It will take too much time and memory. Load "headmodel_fem_tr". {% include markup/end %}
%% compute the transfer matrix
[headmodel_fem_tr, elec] = ft_prepare_vol_sens(headmodel_fem, elec);
%% compute the leadfield
cfg = [];
cfg.grid = sourcemodel;
cfg.headmodel= headmodel_fem_tr;
cfg.elec = elec;
cfg.reducerank = 3;
leadfield_fem = ft_prepare_leadfield(cfg);
This tutorial was about the computation of leadfields that could be feed into the inverse problem which will be explain i Inverse problem.
This tutorial was last tested on 27-08-2017 by Maria Carla Piastra on Ubuntu, Matlab 2015b.