-
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathconftest.py
154 lines (104 loc) · 4.78 KB
/
conftest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
from __future__ import annotations
from itertools import product
from pathlib import Path
from typing import TYPE_CHECKING, Literal, NamedTuple, cast
import evalica
import pandas as pd
import pytest
from hypothesis import strategies as st
from hypothesis.strategies import composite
if TYPE_CHECKING:
from _pytest.fixtures import TopRequest
from hypothesis.strategies import DrawFn
class Comparison(NamedTuple):
"""A tuple holding comparison data."""
xs: list[str] | pd.Series[str]
ys: list[str] | pd.Series[str]
winners: list[evalica.Winner] | pd.Series[evalica.Winner] # type: ignore[type-var]
weights: list[float] | None = None
def enumerate_sizes(n: int) -> list[tuple[int, ...]]:
return [xs for xs in product([0, 1], repeat=n) if 0 < sum(xs) < n]
@composite
def comparisons(
draw: DrawFn,
shape: Literal["good", "bad"] = "good",
) -> Comparison: # type: ignore[type-var]
length = draw(st.integers(0, 5))
if shape == "good":
xs = st.lists(st.text(max_size=length), min_size=length, max_size=length)
ys = st.lists(st.text(max_size=length), min_size=length, max_size=length)
winners = st.lists(st.sampled_from(evalica.WINNERS), min_size=length, max_size=length)
weights = st.lists(st.floats(min_value=0, allow_nan=False, allow_infinity=False),
min_size=length, max_size=length)
else:
min_x, min_y, min_z = draw(st.sampled_from(enumerate_sizes(3)))
length_x, length_y, length_z = (1 + length) * min_x, (1 + length) * min_y, (1 + length) * min_z
xs = st.lists(st.text(max_size=length_x), min_size=length_x, max_size=length_x)
ys = st.lists(st.text(max_size=length_y), min_size=length_y, max_size=length_y)
winners = st.lists(st.sampled_from(evalica.WINNERS), min_size=length_z, max_size=length_z)
weights = st.lists(st.floats(min_value=0, allow_nan=False, allow_infinity=False),
min_size=length_z, max_size=length_z)
has_weights = draw(st.booleans())
return Comparison(xs=draw(xs), ys=draw(ys), winners=draw(winners), weights=draw(weights) if has_weights else None)
@pytest.fixture
def simple() -> Comparison:
df_simple = pd.read_csv(Path(__file__).resolve().parent / "simple.csv", dtype=str)
xs = df_simple["left"]
ys = df_simple["right"]
winners = df_simple["winner"].map({ # type: ignore[type-var]
"left": evalica.Winner.X,
"right": evalica.Winner.Y,
"tie": evalica.Winner.Draw,
})
return Comparison(xs=xs, ys=ys, winners=winners)
@pytest.fixture
def simple_golden() -> pd.DataFrame:
df_golden = pd.read_csv(Path(__file__).resolve().parent / "simple-golden.csv", dtype=str)
df_golden["score"] = df_golden["score"].astype(float)
return df_golden
@pytest.fixture
def food() -> Comparison:
df_food = pd.read_csv(Path(__file__).resolve().parent / "food.csv", dtype=str)
xs = df_food["left"]
ys = df_food["right"]
winners = df_food["winner"].map({ # type: ignore[type-var]
"left": evalica.Winner.X,
"right": evalica.Winner.Y,
"tie": evalica.Winner.Draw,
})
return Comparison(xs=xs, ys=ys, winners=winners)
@pytest.fixture
def food_golden() -> pd.DataFrame:
df_golden = pd.read_csv(Path(__file__).resolve().parent / "food-golden.csv", dtype=str)
df_golden["score"] = df_golden["score"].astype(float)
return df_golden
@pytest.fixture
def llmfao() -> Comparison:
df_llmfao = pd.read_csv("https://github.com/dustalov/llmfao/raw/master/crowd-comparisons.csv", dtype=str)
xs = df_llmfao["left"]
ys = df_llmfao["right"]
winners = df_llmfao["winner"].map({ # type: ignore[type-var]
"left": evalica.Winner.X,
"right": evalica.Winner.Y,
"tie": evalica.Winner.Draw,
})
return Comparison(xs=xs, ys=ys, winners=winners)
@pytest.fixture
def llmfao_golden() -> pd.DataFrame:
df_golden = pd.read_csv(Path(__file__).resolve().parent / "llmfao-golden.csv", dtype=str)
df_golden["score"] = df_golden["score"].astype(float)
return df_golden
DATASETS = frozenset(("simple", "food", "llmfao"))
@pytest.fixture
def comparison(request: TopRequest, dataset: str) -> Comparison:
assert dataset in DATASETS, f"unknown dataset: {dataset}"
return cast(Comparison, request.getfixturevalue(dataset))
@pytest.fixture
def comparison_golden(request: TopRequest, dataset: str, algorithm: str) -> pd.Series[str]:
assert dataset in DATASETS, f"unknown dataset: {dataset}"
df_golden = cast(pd.DataFrame, request.getfixturevalue(f"{dataset}_golden"))
df_slice = df_golden[df_golden["algorithm"] == algorithm][["item", "score"]].set_index("item")
series = cast("pd.Series[str]", df_slice.squeeze())
series.index.name = None
series.name = algorithm
return series