From 3f64246f2973f0d033a812ea3185da45994d3d8c Mon Sep 17 00:00:00 2001 From: moana Date: Fri, 22 Nov 2024 15:46:49 +0100 Subject: [PATCH] Add Readme --- README.md | 89 +++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 89 insertions(+) create mode 100644 README.md diff --git a/README.md b/README.md new file mode 100644 index 0000000..8152a86 --- /dev/null +++ b/README.md @@ -0,0 +1,89 @@ +# jubjub-elgamal + +![Build Status](https://github.com/dusk-network/jubjub-elgamal/workflows/Continuous%20integration/badge.svg) +[![Repository](https://img.shields.io/badge/github-elgamal-blueviolet?logo=github)](https://github.com/dusk-network/jubjub-elgamal) +[![Documentation](https://img.shields.io/badge/docs-elgamal-blue?logo=rust)](https://docs.rs/jubjub-elgamal/) + +This crate provides a Rust implementation of the [ElGamal encryption scheme](https://link.springer.com/chapter/10.1007/3-540-39568-7_2) implemented for elements of the [JubJub elliptic curve](https://github.com/dusk-network/jubjub) to be used natively and as part of a Zero-Knowledge circuit using [plonk](https://github.com/dusk-network/plonk). This implementation is designed by the [Dusk](https://dusk.network) team. + +## About +The ElGamal encryption system is an asymmetric key encryption algorithm for public-key cryptography based on the Diffie-Hellman key exchange. +Its security relies on the difficulty of computing discrete logarithms over finite fields. +The implementation has been created using the field elements of the [`jubjub`](https://github.com/dusk-network/jubjub) elliptic curve. + +## Algorithm + +### Notation + +In the following: +- Multiplication of a point $P$ by a scalar $s$ stands for adding $P$ $s$-times to itself. +- $\mathbb{F}_q$ is the prime finite field of order $q$ +- for a prime $q$: $\mathbb{F}_q^× = \mathbb{F}_q \setminus 0$ contains all nonzero elements of $\mathbb{F}_q$. + +### Setup + +Since we implement our ElGamal encryption scheme on the jubjub elliptic curve we have: +- a finite field $\mathbb{F}_q$ over prime $q$, which corresponds to the scalar field of the elliptic curve BLS12-381 +- an elliptic curve $E / \mathbb{F}_q$, in our case this is the jubjub elliptic curve +- a subgroup $\mathbb{G} \in E(\mathbb{F}_q)$ of curve points, with prime order $p$ +- a fixed generator point $G \in \mathbb{G}$ + +#### Key generation + +- Choose a private signing key, $sk \in \mathbb{F}_p^×$. +- Compute the matching public key, $PK = skG \in \mathbb{G}$. + +#### Encrypting + +Suppose Alice wants to send Bob an encrypted message $m \in \mathbb{F}_q^×$. +To encrypt the message Alice will use Bob's public-key $PK_B$: + +- Choose a random blinder nonce $r \in \mathbb{F}_p^×$. +- Compute first part of the ciphertext $c_1 = R = rG$. +- Compute second part of the ciphertext $c_2 = m + PK_B * r$. +- Send the ciphertext $(c_1, c_2)$ to Bob. + +#### Decrypting + +To decrypt the ciphertext $(c_1, c_2)$ Bob will use his secret-key $sk_B$: + + +- Compute $c_2 - c_1 * sk_B = m$ + +This is true because: +$$ +c_2 - c_1 * sk_B = m + PK_B * r - (r * G * sk_B) = m + PK_B * r - PK_B * r = m +$$ + +## Example + +A basic example demonstrating how to encrypt and decrypt a message using ElGamal: +```rust +use dusk_jubjub::{JubJubScalar, GENERATOR_EXTENDED}; +use ff::Field; +use jubjub_elgamal::{decrypt, encrypt}; +use rand::rngs::StdRng; +use rand::SeedableRng; + +let mut rng = StdRng::seed_from_u64(0xc0b); + +let sk = JubJubScalar::random(&mut rng); +let pk = GENERATOR_EXTENDED * &sk; + +let message = GENERATOR_EXTENDED * JubJubScalar::from(1234u64); + +// Encrypt using a fresh random value 'blinder' +let r = JubJubScalar::random(&mut rng); +let (c1, c2) = encrypt(&pk, &message, &r); + +// Assert decryption +let dec_message = decrypt(&sk, &(c1, c2)); +assert_eq!(message, dec_message); +``` + +## Licensing +This Source Code Form is subject to the terms of the Mozilla Public +License, v. 2.0. If a copy of the MPL was not distributed with this +file, You can obtain one at http://mozilla.org/MPL/2.0/. + +Copyright (c) DUSK NETWORK. All rights reserved.