-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdoublebetadecay.html
374 lines (334 loc) · 26.1 KB
/
doublebetadecay.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
<!DOCTYPE html>
<!--[if lt IE 7 ]><html class="ie ie6" lang="en"> <![endif]-->
<!--[if IE 7 ]><html class="ie ie7" lang="en"> <![endif]-->
<!--[if IE 8 ]><html class="ie ie8" lang="en"> <![endif]-->
<!--[if (gte IE 9)|!(IE)]><!-->
<html lang="en">
<!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1">
<meta name="description" content="">
<meta name="author" content="">
<!--[if IE]>
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<![endif]-->
<title>UTKL Research Group</title>
<!--REQUIRED STYLE SHEETS-->
<!-- BOOTSTRAP CORE STYLE CSS -->
<link href="assets/flags/css/flag-icon.css" rel="stylesheet" />
<!-- BOOTSTRAP CORE STYLE CSS -->
<link href="assets/css/nuosc_bootstrap.css" rel="stylesheet" />
<!-- FONTAWESOME STYLE CSS -->
<link href="font-awesome/css/font-awesome.css" rel="stylesheet" />
<!-- VEGAS STYLE CSS -->
<link href="assets/plugins/vegas/jquery.vegas.min.css" rel="stylesheet" />
<!-- CUSTOM STYLE CSS -->
<link href="assets/css/nuosc_style.css" rel="stylesheet" />
<!-- GOOGLE FONT -->
<link href='http://fonts.googleapis.com/css?family=Open+Sans' rel='stylesheet' type='text/css'>
<!-- HTML5 shim and Respond.js IE8 support of HTML5 elements and media queries -->
<!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/libs/html5shiv/3.7.0/html5shiv.js"></script>
<script src="https://oss.maxcdn.com/libs/respond.js/1.3.0/respond.min.js"></script>
<![endif]-->
<style>
#drop-cap::first-letter {
float: left;
font-size: 85px;
line-height: 1;
font-family: "Times New Roman", Times, serif;
font-weight: bold;
margin-right: 9px;
}
</style>
<!-- Adding MathJax to show mathematical formula -->
<script type="text/x-mathjax-config">
MathJax.Hub.Config({ tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]} });
</script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-MML-AM_CHTML"></script>
<!-- CHECK ELEMENT IN VIEWPORT OR NOR SCRIPT -->
<!--- Dungy's script (bug: previous button's state is not changed when scroll down) -->
<script>
var sectionIDs = ["#nemo_intro", "#nemo-3", "#supernemo","#publication"];
var navbarItemIDs = ["#navbar-nav-item-nemo_intro", "#navbar-nav-item-nemo-3", "#navbar-nav-item-supernemo", "#navbar-nav-item-publication"];
var list = [];
var previousHighlightedID = -1;
var currentHighlightedID = -1;
setInterval(function() {
for (i = 0; i < sectionIDs.length; i++) {
if ($(sectionIDs[i]).isOnScreen(
function(deltas){
return deltas.top >= 400 && deltas.bottom >= 400;
}
)) {
list.push(i);
}
}
if (list.length == 1) {
currentHighlightedID = list[0];
} else if (list.length == 2) {
currentHighlightedID = list[0];
} else {
currentHighlightedID = list[1];
}
for (i = 0; i < sectionIDs.length; i++) {
list.shift();
}
if (currentHighlightedID != previousHighlightedID) {
$(navbarItemIDs[currentHighlightedID]).addClass("navbar-nav-li-active", 100, "swing");
$(navbarItemIDs[previousHighlightedID]).removeClass("navbar-nav-li-active", 100, "swing");
previousHighlightedID = currentHighlightedID;
}
}, 100);
</script>
</head>
<body>
<!-- Navigation -->
<nav class="navbar-inverse" role="navigation" style="position:fixed;">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle" data-toggle="collapse" data-target=".navbar-ex1-collapse">
<span class="sr-only">Toggle navigation</span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
</div>
<!-- Collect the nav links for toggling -->
<div class="collapse navbar-collapse navbar-ex1-collapse">
<ul class="nav navbar-nav">
<li id="navbar-nav-item-home"><a href="index.html" style="font-weight:bold;">Home</a>
</li>
<li id="navbar-nav-item-nemo_intro"><a href="#nemo_intro" style="font-weight:bold;">Intro</a>
</li>
<li id="navbar-nav-item-nemo-3"><a href="#nemo-3" style="font-weight:bold;">NEMO-3</a>
</li>
<li id="navbar-nav-item-supernemo"><a href="#supernemo" style="font-weight:bold;">SuperNEMO</a>
</li>
<!-- <li id="navbar-nav-item-publication"><a href="#publication" style="font-weight:bold;">Publications</a>
</li> -->
</ul>
</div>
<!-- /.navbar-collapse -->
</div>
<!-- /.container -->
</nav>
<!--End Navigation -->
<!-- DOUBLE BETA DECAY Section -->
<section class="for-full-back color-white" id="nemo_intro">
<div class="container">
<div class="row text-center">
<div class="col-md-12">
<h1 style="font-weight:bold;">Neutrinoless Double Beta Decay</h1>
</br>
</br>
</br>
<h4 align="justify" style="padding-left:50px; padding-right:50px;">
The process of double beta decay involves two protons transforming into two neutrons at the same time (or viceversa) inside the nucleus of an atom. When this occurs, two beta particles (electrons or positrons) are emitted. So far, this process has been observed to always be accompanied by the emission of two neutrinos or two antineutrinos, but it is hypothesized that the double beta decay can occur without them. This is what is referred to as neutrinoless double beta decay. It has never been observed, but through various experiment it has been found that the lower limit for its half-life is ~\(10^{25}\) years.
</h4>
<h4 align="justify" style="padding-left:50px; padding-right:50px;">
In order to find evidence for these decays, very low background is required, as well as a substantial amount of radioactive sources which undergo regular double beta decay. If the elusive process is ever observed, it would make it possible to measure the effective mass ofneutrinos, and it would be the first report of lepton number ever being violated. The violation of lepton number leads to new physics which help explain why there is more matter than antimatter in the universe.
</h4>
<img id="nemo_fig_1" src="assets/img/researchPlots/nemo/frejus.png" style="max-height:600px;"/>
</br>
</br>
</br>
<h4 align="justify" style="padding-left:50px; padding-right:50px;">
The NEMO collaboration began studying double beta decay in the early 1990s through the development of two prototypes named NEMO-1 and NEMO-2. These prototypes eventually led to the construction of the NEMO-3 detector in the Laboratoire Souterrain de Modane (LSM), which is located inside a tunnel connecting the cities of Modane and Bardonecchia. The success of the NEMO-3 detector ultimately spurred the creation of SuperNEMO, a modern detector that, once commissioned, will continue the search for neutrinoless double beta decay in the LSM.
</h4>
</div>
</div>
</div>
</section>
<!--End DOUBLE BETA DECAY Section -->
<!-- NEMO-3 Section -->
<section class="for-full-back color-dark" id="nemo-3">
<div class="container">
<div class="row text-center">
<div class="col-md-12">
<h1 style="padding-left:50px; padding-right:50px; color:white;">NEMO-3</h1>
</br>
</br>
<h4 align="justify" style="padding-left:50px; padding-right:50px; color:white;">
NEMO-3 was a cylindrical detector which was radially divided into 20 sections. Each section was identical in size, but not all of them contained the same type of radioactive sources. In fact, NEMO-3 was very unique because it was studying 7 different sources of double beta decay at the same time. These sources were installed inside the sections in the form of thin vertical foils, and they totalled approximately 10 kg of double beta decay isotopes. The detector also had a tracking volume to completely reconstruct the topology of any charged particles passing through it. This was another great advantage of NEMO-3, as it helped significantly to distinguish double beta decays from any other possible events. The energy of the beta particles was measured using scintillator blocks coupled to 8 inch PMTs.
</h4>
<img id="nemo_fig_1" src="assets/img/researchPlots/nemo/nemo3.png" style="max-height:600px;"/>
</br>
</br>
</br>
<h4 align="justify" style="padding-left:50px; padding-right:50px; color:white;">
To keep the background as low as possible, the NEMO-3 detector was housed underneath a mountain. This reduced the amount of cosmic rays reaching it by a factor of a million. In addition, every piece of material used to construct NEMO-3 had to be carefully tested to make sure that it had very low radiation. Each test could last more than a month since the radiation emitted by the desired materials needed to be orders of magnitude less than that emitted by humans.
</h4>
<img id="nemo_fig_1" src="assets/img/researchPlots/nemo/sources.png" style="max-height:600px;"/>
</br>
</br>
</br>
<h4 align="justify" style="padding-left:50px; padding-right:50px; color:white;">
After 8 years of data taking (from 2003 to 2011), the results obtained were very successful. After a lot of analysis, the world’s most accurate measurements of the two-neutrino double beta decay half lives were calculated for each of the sources which were being studied, and the best limits were placed on most of them for the half-life of neutrinoless double beta decay. For more information on these results, see the section “Published Papers”.
</h4>
</div>
</div>
</div>
</section>
<!--End NEMO-3 Section -->
<!-- SuperNEMO Section -->
<section class="for-full-back color-white " id="supernemo">
<div class="container">
<div class="row text-center">
<div class="col-md-12">
<h1 style="font-weight:bold;">SuperNEMO</h1>
</br>
</br>
<div class="col-md-12">
<h4 align="justify" style="padding-left:50px; padding-right:50px;">
The success of NEMO-3 motivated an effort to construct a new and better detector called SuperNEMO. It is designed to have larger amounts of double beta decay sources and to be made out of materials which are less radioactive than the ones used to build NEMO-3, further reducing the possible background. SuperNEMO will also be composed of 20 modules. Approximately 5-7 kg of double beta decay isotopes will be installed in each module, allowing it to have at least 10 times more source mass than its predecessor. The materials to build the modules were chosen so that, once built, each module will be less radioactive than 8 bananas.
</h4>
</div>
<img id="miner_sens_fig_1" src="assets/img/researchPlots/nemo/image4.png" style="max-height:600px;"/>
<div class="col-md-12">
<h4 align="justify" style="padding-left:50px; padding-right:50px; ">
In contrast to the cylindrical shape of the NEMO-3 detector, the SuperNEMO modules exhibit a rectangular geometry. This allows for a staged approach to the construction of the detector, meaning that a module can be taking data while the rest of the modules are being built. It also makes it possible to build this kind of modules in other underground locations if desired. Lastly, this geometry facilitates the extrapolation of sensitivity and performance from a single module to the whole SuperNEMO detector.
</h4>
</div>
<div class="col-md-12">
<h4 align="justify" style="padding-left:50px; padding-right:50px; ">
The first module, called the demonstrator, is currently under construction. It will be populated with \(^{82}\)Se as its only source of double beta decays. However, since virtually any double beta decay source may be used, the possibility of enriching and using \(^{150}\)Nd and \(^{48}\)Ca is being investigated. The SuperNEMO experiment is aiming to reach a sensitivity greater than \(10^{26}\) years for the half life of neutrinoless double beta decay, which translates to an effective neutrino mass of 50-100 meV.
</h4>
</div>
<div class="col-md-12">
<h4 align="justify" style="padding-left:50px; padding-right:50px; ">
Our group’s involvement with this experiment consists of two calibration systems: The Calibration Source Deployment System, and the Light Injection System. Information about each of them can be found in the following links:
<ul>
<li>Calibration Source Deployment System. <a href="https://pos.sissa.it/282/808/pdf">See more...</a></li>
<li>Light Injection System. <a href="http://iopscience.iop.org/article/10.1088/1742-6596/888/1/012080/pdf">See more...</a></li>
</ul>
</h4>
</div>
<h2 style="font-weight:bold;">Radioactive Source Deployment System</h2>
</br>
</br>
<div class="col-md-12">
<h4 align="justify" style="padding-left:50px; padding-right:50px; ">
The radioactive source deployment system consists of six oxygen-free copper plumb bobs suspended from stainless steel wires inside the SuperNEMO source frame. Each wire is wrapped around a wheel on top of the detector (housed inside a stainless steel vessel) which may be rotated by a stepper motor, lowering and raising each plumb bob. At seven fixed positions on each wire above the plumb bobs, 207Bi calibration sources are attached, making it possible to introduce the sources into the detector. At the bottom of the source frame there are six nests with laser light passing through them. Each plumb bob has a hole big enough for the laser beam to pass through. As a plumb bob enters a nest, it first interrupts the laser; this interruption is detected by a computer which slows down the motor. As the plumb bob continues descending, it reaches a position where its hole aligns with the laser beam. The computer is once again alerted by this change, and it stops the motor completely.
</h4>
</div>
<img id="source_deployment" src="assets/img/researchPlots/nemo/source_deployment.png" style="max-height:400px;"/>
<div class="col-md-12">
<h5 align="center" style="padding-left:50px; padding-right:50px;"> Left: The six different calibration lines installed on top of the SuperNEMO source frame. Right: A close up of one of the vessels which houses the wheels which raise and lower the plumb bobs and calibration sources. </h5>
</div>
<div class="col-md-12">
<h4 align="justify" style="padding-left:50px; padding-right:50px; ">
The system is fully automated. Photodiode amplifiers are used to create electrical signals whenever they receive light from the lasers. These signals are the way the computer knows when the lasers are interrupted and uninterrupted. The computer which controls the whole system, called CompactRIO, communicates with the stepper motor drivers which actuate the stepper motors that deploy the plumb bobs. The CompactRIO has 64 inputs/outputs, and it uses LabVIEW as the language that interprets and analyzes the inputs to decide which outputs need
to be sent.
</h4>
</div>
<img id="laser_source_positioning" src="assets/img/researchPlots/nemo/laser_source_positioning.png" style="max-height:400px;"/>
<div class="col-md-12">
<h5 align="center" style="padding-left:50px; padding-right:50px;"> Computer drawings showing how a plumb bob interacts with the light passing through a bottom nest in order to find its lowest position.</h5>
</div>
<div class="col-md-12">
<h4 align="justify" style="padding-left:50px; padding-right:50px; ">
The radioactive source deployment system has already been installed and incorporated into the SuperNEMO detector. The mechanics of it (introduction and retrieval of the calibration sources) have already been successfully tested, and it will begin performing calibration runs some time in the year 2021.
</h4>
</div>
<img id="vessel_mount" src="assets/img/researchPlots/nemo/vessel_mount.png" style="max-height:500px;"/>
<div class="col-md-12">
<h5 align="center" style="padding-left:50px; padding-right:50px;"> Vessels mounted on top of the SuperNEMO detector.</h5>
</div>
<h5 style="color:white"><div style="width:100px;height:50px;"></div></h5>
<h2 style="font-weight:bold;">Light Injection and Monitoring System</h2>
</br>
</br>
<div class="col-md-12">
<h4 align="justify" style="padding-left:50px; padding-right:50px; ">The Light Injection and Monitoring (LIM) System injects pulsed UV light into each optical module of the SuperNEMO calorimeter via optical fibers to control and monitor their energy response over time. The aim of the LIM system is to guarantee the stability of the calorimetric response to within 1%. The LIM system consists of 20 UV-LEDs illuminating ~1500 optical fibers routed to optical modules. Each LED illuminates a bundle of ~75 fibers. Reference optical modules outside the detector are used to monitor the energy of 207 Bi sources as well as the light levels of some optical fibers connected to each of the 20 UV-LEDs. By comparing the light from the UV-LEDs to the constant energy</h4>
</div>
<div class="col-md-12">
<h4 align="justify" style="padding-left:50px; padding-right:50px; ">By comparing the light from the UV-LEDs to the constant energy of the 207 Bi sources, it is possible to correct any fluctuations on the UV-LEDs. After making those corrections, that light can be used to see if the energy response of the SuperNEMO optical modules is drifting over time. Tests with a top-bench version of this system at UT Austin outperformed the 1% stability goal. The system has been installed and run successfully at the site of the SuperNEMO detector. It will also begin performing calibration runs some time in the year 2021.</div>
<img id="LI-schematic" src="assets/img/researchPlots/nemo/LI_schematic.png" style="max-height:600px;"/>
<div class="col-md-12">
<h5 align="center" style="padding-left:50px; padding-right:50px;">Schematic of the Light Injection and Monitoring System together with actual photos of the system as it is currently installed.</h5>
</div>
<h5 style="color:white"><div style="width:100px;height:50px;"></div></h5>
</div>
</div>
</div>
</section>
<!-- End SuperNEMO Section -->
<!-- Publications Section -->
<section class="for-full-back color-dark " id="publication">
<div class="container">
<div class="row text-center">
<div class="col-md-8 col-md-offset-2 ">
<h1 style="color:white;">Publications</h1>
<h4 style="color:white;">
<strong>
List of publications related to double beta decay research.
</strong>
</h4>
</div>
</div>
<div class="row text-center">
<div class="col-md-12 g-pad-bottom" style="width:100%;">
<div class="col-md-3" style="width:100%;">
<ol class="plan">
<li class="plan-head">SuperNEMO Papers</li>
<li><strong>Development of methods for the preparation of radiopure 82 Se sources for the SuperNEMO neutrinoless double-beta decay experiment</strong>, A. V. Rakhimov et al. Radiochimica Acta, 108(2), 87-97 (2019).</li>
<li><strong>Calibration Systems for the SuperNEMO Experiment, Poster, R. Salazar in behalf of the SuperNEMO Collaboration</strong>, Zenodo, https://doi.org/10.5281/zenodo.1300646 (2018).</li>
<li><strong>The Search for Periodic Modulations of Nuclear Decay Rates with the NEMO-3 Experiment and Development of the Light Injection Monitoring System for the SuperNEMO Experiment</strong>, PhD Thesis, J. Cesar, University of Texas at Austin, 2016, http://hdl.handle.net/2152/44541.</li>
<li><strong>The SuperNEMO light injection and monitoring system</strong>, J. Cesar, T. Le Noblet, R. Salazar, and SuperNEMO Collaboration, Journal of Physics Conference Series, Volume 888, 2016.</li>
<li><strong>Search for Neutrinoless Double Beta Decay of 116 Cd and 82 Se and Calorimeter Simulations for the SuperNEMO Experiment</strong>, PhD Thesis, Z. Liptak, University of Texas at Austin, 2014.</li>
<li><strong>Spectral modeling of scintillator for the NEMO-3 and SuperNEMO detectors</strong>, J. Argyriades et al. Nucl.Inst.Meth. A 625(1).</li>
<li><strong>Probing New Physics Models of Neutrinoless Double Beta Decay with SuperNEMO</strong>, R. Arnold et al.Eur.Phys.J.C70:927-943(2010).</li>
<li><strong>Results of the BiPo-1 prototype for radiopurity measurements for the SuperNEMO double beta decay source foils</strong>, J. Argyriades et al. Nucl. Inst. Meth. A 622 120-128 (2010).</li>
<li><strong>The SuperNEMO project</strong>, F. Piquemal Physics of Atomic Nuclei, Volume 69, Issue 12, pp.2096-2100.</li>
</ol>
</div>
</div>
<div class="col-md-12 g-pad-bottom" style="width:100%;">
<div class="col-md-3" style="width:100%;">
<ol class="plan">
<li class="plan-head">NEMO-3 Papers</li>
<li><strong>Search for Periodic Modulations of the Rate of Double-Beta Decay of 100 Mo in the NEMO-3 Detector</strong>, NEMO-3 Collaboration, R. Arnold et al. arXiv:2011.07657v1 [nucl-ex], (2020).</li>
<li><strong>Measurement of the 2\(\nu\beta\beta\) decay half-life and search for the 0\(\nu\beta\beta\) decay of \(^{116}\)Cd with the NEMO-3 detector</strong>, R. Arnold et al. Phys. Rev. D 95, 012007.</li>
<li><strong>Measurement of the 2\(\nu\beta\beta\) decay half-life of \(^{150}\)Nd and a search for 0\(\nu\beta\beta\) decay processes with the full exposure from the NEMO-3 detector</strong>, R. Arnold et al. Phys. Rev. D 94, 072003.</li>
<li><strong>Measurement of the double-beta decay half-life and search for the neutrinoless double-beta decay of \(^{48}\)Ca with the NEMO-3 detector</strong>, R. Arnold et al. Phys. Rev. D 93, 112008.</li>
<li><strong>Results of the search for neutrinoless double-\(\beta\) decay in \(^{100}\)Mo with the NEMO-3 experiment</strong>, R. Arnold et al. Phys. Rev. D 92, 072011.</li>
<li><strong>Investigation of double beta decay of \(^{100}\)Mo to excited states of \(^{100}\)Ru</strong>, R. Arnold et al. Nucl. Phys. A 925 (2014) 25.</li>
<li><strong>Search for neutrinoless double-beta decay of \(^{100}\)Mo with the NEMO-3 detector</strong>, R. Arnold et al. Phys. Rev. D 89, 111101(R).</li>
<li><strong>Measurement of the \(\beta\beta\) Decay Half-Life of \(^{130}\)Te with the NEMO-3 Detector</strong>, R. Arnold et al. Phys. Rev. Lett. 107, 062504.</li>
<li><strong>Spectral modeling of scintillator for the NEMO-3 and SuperNEMO detectors</strong>, J. Argyriades et al. Nucl.Inst.Meth. A 625(1).</li>
<li><strong>Measurement of the two neutrino double beta decay half-life of Zr-96 with the NEMO-3 detector</strong>, J. Argyriades et al. Nucl.Phys.A847:168-179 (2010).</li>
<li><strong>Measurement of the Double Beta Decay Half-life of \(^{150}\)Nd and Search for Neutrinoless Decay Modes with the NEMO-3 Detector</strong>, J. Argyriades et al. Phys. Rev. C 80, 032501(R) (2009).</li>
<li><strong>Measurement of the background in the NEMO 3 double beta decay experiment</strong>, J. Argyriades et al. Nucl. Inst. Meth. A 606, Issue 3 (2009) 449-465.</li>
<li><strong>Measurement of double beta decay of \(^{100}\)Mo to excited states in the NEMO-3 experiment</strong>, R. Arnold et al.Nucl. Phys. A 781 (2007) 209-226.</li>
<li><strong>Limits on different Majoron decay modes of \(^{100}\)Mo and \(^{82}\)Se for neutrinoless double beta decays in the NEMO-3 experiment</strong>, R. Arnold et al. Nucl.Phys. A 765 (2006) 483-494</li>
<li><strong>First Results of the Search for Neutrinoless Double-Beta Decay with the NEMO-3 Detector</strong>, R. Arnold et al.Phys. Rev. Let. 95, 182302 (2005).</li>
<li><strong>Technical design and performance of the NEMO-3 detector</strong>, R. Arnold et al. Nucl. Inst. Meth. A536 (2005) 79-122.</li>
<li><strong>Possible background reductions in double beta decay experiments</strong>, R. Arnold et al. Nucl. Instrum. Meth. A503:649-657</li>
<li><strong>Chemical purification of molybdenum samples for the NEMO-3 experiment</strong>, R. Arnold et al. Nucl. Inst. Meth. A 474 (2001) 93</li>
</ol>
</div>
</div>
</div>
</div>
</section>
<!--End Publications Section -->
<!--footer Section -->
<div class="for-full-back" id="footer" style="padding-bottom:10px;">
<p align="center"><a href="https://www.utexas.edu"><img src="assets/img/ut_logo.png" width="20%" style="margin-bottom:-20px;"></a></p>
<p style="color:#ed7900;font-size:120%;margin-bottom:-20px;" align="center">Copyright © 2017 UTKL Research Group.</p>
<p style="color:#ffffff;font-size:80%;margin-bottom:-10px;" align="center">
This website is developed using <a href="http://getbootstrap.com/">bootstrap</a>, <a href="https://github.com/lipis/flag-icon-css">flag-icon-css</a>, <a href="http://fontawesome.io/">font-awesome</a> and <a href="http://www.dafont.com/geobats.font">geobats</a>.
</p>
</div>
<!--End footer Section -->
<!-- JAVASCRIPT FILES PLACED AT THE BOTTOM TO REDUCE THE LOADING TIME -->
<!-- CORE JQUERY -->
<script src="assets/plugins/jquery-1.10.2.js"></script>
<!-- BOOTSTRAP CORE SCRIPT -->
<script src="assets/plugins/bootstrap.js"></script>
<!-- CUSTOM SCRIPTS -->
<script src="assets/js/custom.js"></script>
</body>
</html>