forked from nairaditya/Modal-Decomposition-ROM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Galerkin_Projection_ROM.m
273 lines (237 loc) · 8.99 KB
/
Galerkin_Projection_ROM.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
function a_GP = Galerkin_Projection_ROM(X,Y,...
uMean,vMean,uPOD,vPOD,a_POD,n,m,dx,dy,Re,t)
%% Galerkin Projection model for 2D incompressible flow
% -- Based on "Reduced-order modeling for flow control", Noack et al.
%
% Author: Aditya Nair, University of Nevada Reno
%
% AN provides no guarantees for this code. Use as-is and for academic
% research use only; no commercial use allowed without permission. For
% citations, please use the reference below:
%
% Ref: A. G. Nair, S. L. Brunton & ``````````````````````````````````````````````````````````K. Taira,
% "Networked-oscillator-based modeling and control of unsteady wake flows,"
% Physical Review E, vol 97, 2018
% (https://doi.org/10.1103/PhysRevE.97.063107)
%
% The code is written for educational clarity and not for speed.
%% Construct Galerkin Projection model terms
[Am1i,Am2i,BDmij,BAm1ij,BAm2ij,Cmijk] = ...
Galerkin_projection(X,Y,uMean,vMean,uPOD,vPOD,n,m,dx,dy,Re);
%% Run Galerkin Projection model
initial_condition = a_POD(1,:); % set initial condition
options = odeset('RelTol',1e-8,'AbsTol',...
1e-8*ones(1,size(initial_condition,2))); % set tolerance for integrator
[~,a_GP] = ode45(@Galerkin_proj_function,t,initial_condition,...
options,Am1i,Am2i,BDmij,BAm1ij,BAm2ij,Cmijk);% run model
end
function [Am1i,Am2i,BDmij,BAm1ij,BAm2ij,Cmijk] = ...
Galerkin_projection(X,Y,uMean,vMean,uPOD,vPOD,n,m,dx,dy,Re)
nModes = size(uPOD,3); % number of POD modes for GP
Am1i = zeros(nModes,1); % (viscous term, mean projection) - l_{i0}
Am2i = zeros(nModes,1); % (inertial term, mean projection) - q_{i00}
BDmij = zeros(nModes,nModes); % (viscous term, mode projection) - l_{ij}
BAm1ij = zeros(nModes,nModes); % (inertial term, modes and mean projection) - q_{ij0}
BAm2ij = zeros(nModes,nModes); % (inertial term, mean and modes projection) - q_{i0j}
Cmijk = zeros(nModes,nModes,nModes); % (inertial term, mode projection) - q_{ijk}
% Calculate derivatives and laplacian of mean flow
duMdx = diffxy(X,uMean,2);duMdy = diffxy(Y,uMean,1);
dvMdx = diffxy(X,vMean,2);dvMdy = diffxy(Y,vMean,1);
duM2 = 4*del2(uMean,dx,dy);
dvM2 = 4*del2(vMean,dx,dy);
for i = 1:nModes
% Compute Ai
Am1i(i) = (1/Re)*simpson_rule((duM2(2:n-2,2:m-2).*uPOD(2:n-2,2:m-2,i) + ...
dvM2(2:n-2,2:m-2).*vPOD(2:n-2,2:m-2,i)),dx,dy,n-4,m-4);
Am2i(i) = simpson_rule(-((uMean(2:n-2,2:m-2).*duMdx(2:n-2,2:m-2) ...
+ vMean(2:n-2,2:m-2).*duMdy(2:n-2,2:m-2)).*uPOD(2:n-2,2:m-2,i) ...
+ (uMean(2:n-2,2:m-2).*dvMdx(2:n-2,2:m-2) ...
+ vMean(2:n-2,2:m-2).*dvMdy(2:n-2,2:m-2)).*vPOD(2:n-2,2:m-2,i)),dx,dy,n-4,m-4);
for j = 1:nModes
% Compute Bij
% Calculate derivatives and laplacian of modes
du2 = 4*del2(uPOD(:,:,j),dx,dy);dv2 = 4*del2(vPOD(:,:,j),dx,dy);
dudx = diffxy(X,uPOD(:,:,j),2);dudy = diffxy(Y,uPOD(:,:,j),1);
dvdx = diffxy(X,vPOD(:,:,j),2);dvdy = diffxy(Y,vPOD(:,:,j),1);
BDmij(i,j) = (1/Re)*simpson_rule((du2(2:n-2,2:m-2).*uPOD(2:n-2,2:m-2,i) + ...
dv2(2:n-2,2:m-2).*vPOD(2:n-2,2:m-2,i)),dx,dy,n-4,m-4);
BAm1ij(i,j) = simpson_rule(-((uMean(2:n-2,2:m-2).*dudx(2:n-2,2:m-2) ...
+ vMean(2:n-2,2:m-2).*dudy(2:n-2,2:m-2)).*uPOD(2:n-2,2:m-2,i) + ...
(uMean(2:n-2,2:m-2).*dvdx(2:n-2,2:m-2) ...
+ vMean(2:n-2,2:m-2).*dvdy(2:n-2,2:m-2)).*vPOD(2:n-2,2:m-2,i)),dx,dy,n-4,m-4);
BAm2ij(i,j) = simpson_rule(-((uPOD(2:n-2,2:m-2,j).*duMdx(2:n-2,2:m-2) ...
+ vPOD(2:n-2,2:m-2,j).*duMdy(2:n-2,2:m-2)).*uPOD(2:n-2,2:m-2,i) + ...
(uPOD(2:n-2,2:m-2,j).*dvMdx(2:n-2,2:m-2) ...
+ vPOD(2:n-2,2:m-2,j).*dvMdy(2:n-2,2:m-2)).*vPOD(2:n-2,2:m-2,i)),dx,dy,n-4,m-4);
for k = 1:nModes
% Compute Cijk
dukdx = diffxy(X,uPOD(:,:,k),2);dukdy = diffxy(Y,uPOD(:,:,k),1);
dvkdx = diffxy(X,vPOD(:,:,k),2);dvkdy = diffxy(Y,vPOD(:,:,k),1);
Cmijk(i,j,k) = simpson_rule(-((uPOD(2:n-2,2:m-2,j).*dukdx(2:n-2,2:m-2) ...
+ vPOD(2:n-2,2:m-2,j).*dukdy(2:n-2,2:m-2)).*uPOD(2:n-2,2:m-2,i) + ...
(uPOD(2:n-2,2:m-2,j).*dvkdx(2:n-2,2:m-2) ...
+ vPOD(2:n-2,2:m-2,j).*dvkdy(2:n-2,2:m-2)).*vPOD(2:n-2,2:m-2,i)),dx,dy,n-4,m-4);
end
end
end
end
function [dadt] = Galerkin_proj_function(t,a,A1i,A2i,BDij,BA1ij,BA2ij,Cijk)
%% Global variables
c = a;nModes = length(c);
dadt = zeros(nModes,1);
for iMode = 1:nModes
dadt(iMode) = dadt(iMode) + A1i(iMode) + A2i(iMode);
for j = 1:nModes
dadt(iMode) = dadt(iMode) + BDij(iMode,j)*c(j) + ...
BA2ij(iMode,j)*c(j) + BA1ij(iMode,j)*c(j);
for k = 1:nModes
dadt(iMode) = dadt(iMode) + Cijk(iMode,j,k)*c(j)*c(k);
end
end
end
end
function out = simpson_rule(U,dx,dy,NX,NY)
s1 = (U(1,1)+U(1,NY+1)+U(NX+1,1)+U(NX+1,NY+1));
ixo = 2:2:NX;
ixe = 3:2:NX-1;
iyo = 2:2:NY;
iye = 3:2:NY-1;
s2 = 2*(sum(U(1,iye))+sum(U(NX+1,iye))+sum(U(ixe,1))+sum(U(ixe,NY+1)) );
s3 = 4*(sum(U(1,iyo))+sum(U(NX+1,iyo))+sum(U(ixo,1))+sum(U(ixo,NY+1)) );
s4 = 16*sum(sum(U(ixo,iyo)))+ 4*sum(sum(U(ixe,iye)));
s5 = 8*sum(sum(U(ixe,iyo)))+ 8*sum(sum(U(ixo,iye)));
out = s1 + s2 + s3 + s4 + s5;
out = out*dx*dy/9.0;
end
function dy = diffxy(x,y,varargin)
% DIFFXY - accurate numerical derivative/differentiation of Y w.r.t X.
%
% DY = DIFFXY(X,Y) returns the derivative of Y with respect to X using a
% pseudo second-order accurate method. DY has the same size as Y.
% DY = DIFFXY(X,Y,DIM) returns the derivative along the DIM-th dimension
% of Y. The default is differentiation along the first
% non-singleton dimension of Y.
% DY = DIFFXY(X,Y,DIM,N) returns the N-th derivative of Y w.r.t. X.
% The default is 1.
%
% Y may be an array of any dimension.
% X can be any of the following:
% - array X with size(X) equal to size(Y)
% - vector X with length(X) equal to size(Y,DIM)
% - scalar X denotes the spacing increment
% DIM and N are both integers, with 1<=DIM<=ndims(Y)
%
% DIFFXY has been developed especially to handle unequally spaced data,
% and features accurate treatment for end-points.
%
% Example:
% % Data with equal spacing
% x = linspace(-1,2,20);
% y = exp(x);
%
% dy = diffxy(x,y);
% dy2 = diffxy(x,dy); % Or, could use >> dy2 = diffxy(x,y,[],2);
% figure('Color','white')
% plot(x,(y-dy)./y,'b*',x,(y-dy2)./y,'b^')
%
% Dy = gradient(y)./gradient(x);
% Dy2 = gradient(Dy)./gradient(x);
% hold on
% plot(x,(y-Dy)./y,'r*',x,(y-Dy2)./y,'r^')
% title('Relative error in derivative approximation')
% legend('diffxy: dy/dx','diffxy: d^2y/dx^2',...
% 'gradient: dy/dx','gradient: d^2y/dx^2')
%
% Example:
% % Data with unequal spacing.
% x = 3*sort(rand(20,1))-1;
% % Run the example above from y = exp(x)
%
% See also DIFF, GRADIENT
% and DERIVATIVE on the File Exchange
% for Matlab (should work for most versions)
% version 1.0 (Nov 2010)
% (c) Darren Rowland
% email: [email protected]
%
% Keywords: derivative, differentiation
[h,dy,N,perm] = parse_inputs(x,y,varargin);
if isempty(dy)
return
end
n = size(h,1);
i1 = 1:n-1;
i2 = 2:n;
for iter = 1:N
v = diff(dy)./h;
if n>1
dy(i2,:) = (h(i1,:).*v(i2,:)+h(i2,:).*v(i1,:))./(h(i1,:)+h(i2,:));
dy(1,:) = 2*v(1,:) - dy(2,:);
dy(n+1,:) = 2*v(n,:) - dy(n,:);
else
dy(1,:) = v(1,:);
dy(n+1,:) = dy(1,:);
end
end
% Un-permute the derivative array to match y
dy = ipermute(dy,perm);
end
%%% Begin local functions %%%
function [h,dy,N,perm] = parse_inputs(x,y,v)
numvarargs = length(v);
if numvarargs > 2
error('diffxy:TooManyInputs', ...
'requires at most 2 optional inputs');
end
h = [];
N = [];
perm = [];
% derivative along first non-singleton dimension by default
dim = find(size(y)>1);
% Return if dim is empty
if isempty(dim)
dy = [];
return
end
dim = dim(1);
% Set defaults for optional arguments
optargs = {dim 1};
newVals = ~cellfun('isempty', v);
optargs(newVals) = v(newVals);
[dim, N] = optargs{:};
% Error check on inputs
if dim<1 || dim>ndims(y) || dim~=fix(dim) || ~isreal(dim)
error('diffxy:InvalidOptionalArg',...
'dim must be specified as a non-negative integer')
end
if N~=fix(N) || ~isreal(N)
error('diffxy:InvalidOptionalArg',...
'N must be an integer')
end
% permutation which will bring the target dimension to the front
perm = 1:length(size(y));
perm(dim) = [];
perm = [dim perm];
dy = permute(y,perm);
if length(x)==1 % Scalar expansion to match size of diff(dy,[],1)
sizeh = size(dy);
sizeh(1) = sizeh(1) - 1;
h = repmat(x,sizeh);
elseif ndims(x)==2 && any(size(x)==1) % Vector x expansion
if length(x)~=size(dy,1)
error('diffxy:MismatchedXandY',...
'length of vector x must match size(y,dim)')
end
x = x(:);
sizeh = size(dy);
sizeh(1) = 1;
h = repmat(diff(x),sizeh);
else
if size(y) ~= size(x)
error('diffxy:MismatchedXandY',...
'mismatched sizes of arrays x and y');
end
% Permute x as for y, then diff
h = diff(permute(x,perm),[],1);
end
end