-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcipher.py
executable file
·524 lines (456 loc) · 16.1 KB
/
cipher.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
#!/usr/bin/env python3
import random
import click
import os
from typing import *
"""
See readme.md, other docstrings, or run ./cipher.py --help from the terminal
to view detailed information.
"""
ALPHABET: str = "abcdefghijklmnopqrstuvwxyz"
def p(content):
click.echo(content, err=False)
def e(content):
click.echo(content, err=True)
class Keycap:
"""
Represents a keycap on an ortholinear keyboard.
The three notable lists are:
1. self.surround gives a list of fully-reversible keys
2. self.deciphers_to returns a list of keys for going from ciphertext to cleartext
in the manner described in the book
3. self.encrypts_to returns a list of keys that contain self in their deciphers_to
These attributes are not fully-baked until Cipher.__init__ has finished
"""
def __init__(self, display: chr):
self.blank: bool = False if display.strip() else True
self.name: chr = display if not self.blank else " "
self.right: Keycap
self.left: Keycap
self.up: Keycap
self.down: Keycap
# these two are set at the end of Cipher.__init__
self.surround: List[Keycap] = [] # these ones are reversible
self.encrypts_to: List[Keycap] = []
def __repr__(self) -> str:
return self.name if not self.blank else "∞"
def __str__(self) -> str:
return self.name
@property
def NE(self) -> "Keycap":
return self.up.right
@property
def NW(self) -> "Keycap":
return self.up.left
@property
def SW(self) -> "Keycap":
return self.down.left
@property
def SE(self) -> "Keycap":
return self.down.right
@property
def raw_surround(self) -> "List[Keycap]":
"""
Returns the 8 characters surrounding the letter starting with the one
to the right and proceeding counterclockwise
"""
# noqa lines are for resolved references due to program flow
return [
self.right, # noqa
self.NE,
self.up,
self.NW,
self.left, # noqa
self.SW,
self.down,
self.SE,
]
@property
def deciphers_to(self) -> "List[Keycap]":
return [k for k in self.raw_surround if not k.blank]
def bake_surround(self) -> int:
"""
Filters out the blank and non-reversible keys from raw_surround
and then saves it to self.surround
Returns the number of non-reversible keys that were thrown out
(not counting blanks)
"""
self.surround = [k for k in self.deciphers_to if k in self.encrypts_to]
return len(self.deciphers_to) - len(self.surround)
def draw(self, out: bool = True) -> "List[str]":
o: List[str] = []
def make_row(
keys: "List[Union[Keycap, chr]]", substitutes: str, connect: chr = "─"
) -> str:
x: List[chr] = []
for i, key in enumerate(keys):
if str(key).strip():
x.append(str(key))
else:
x.append(substitutes[i])
o.append((connect * 2).join(x))
return o[-1]
bnk = "│ │"
mbr = (bnk, " ", " ")
make_row([self.NW, self.up, self.NE], "┌─┐")
make_row(*mbr)
make_row([self.left, self, self.right], bnk, " ")
make_row(*mbr)
make_row([self.SW, self.down, self.SE], "└─┘")
if out:
p("\n".join(o))
return o
def cap_list_str(surrounding: List[Keycap]) -> str:
return "".join(str(k) for k in surrounding)
# If your layout has its "blank" keys to the left,
# add it to this list
# Layout names (including filenames) should be lower-case
REVERSE_LAYOUTS: List[str] = [
"dvorak",
]
class Cipher:
def __init__(
self, layout: str = "QWERTY", alphabet_check: int = 26, reverse: bool = None
):
layout = layout.lower().strip()
if not layout:
layout = "qwerty"
if reverse is None and layout in REVERSE_LAYOUTS:
reverse = True # the symbol keys are on the left on Dvorak
# Load the layout
self.alphabet: str = ""
self.letter_index: Dict[chr, Keycap] = {}
self.grid: List[List[Keycap]] = []
self.height: int = 0
for row in open(os.path.join(os.path.dirname(__file__), f"layouts/{layout}")):
row = row.lower().strip()
self.alphabet += row
self.grid.append([])
for char in row:
c = Keycap(char)
self.letter_index[char] = c
self.grid[self.height].append(c)
self.height += 1
self.row_lengths: List[int] = [len(r) for r in self.grid]
max_len = max(self.row_lengths)
# Validity checks
assert len(self.alphabet) == len(
self.letter_index.keys()
), f"Layout has at least one repeated letter"
if alphabet_check > 0:
dif: int = len(self.alphabet) - alphabet_check
if dif > 0:
e(f"Layout contains {dif} more letters than the alphabet, continuing.")
assert (
dif >= 0
), f"Layout is missing {-dif} letter{'s' if dif < -1 else ''} of the alphabet"
# Arrange the keycaps to a grid
for r in range(self.height):
if reverse:
self.grid[r].reverse()
for c in range(1, l := self.row_lengths[r]):
cap: Keycap = self.grid[r][c]
left: Keycap = self.grid[r][c - 1]
right: Keycap = self.grid[r][(c + 1) % l]
cap.left = left
cap.right = right
left.right = cap
right.left = cap
# blank keycaps for padding
# ALWAYS ON THE RIGHT
for x in range(l, max_len):
k = Keycap("")
k.left = self.grid[r][x - 1]
if k.left.blank:
k.left.right = k
if x == max_len - 1:
k.right = self.grid[r][0]
self.grid[r].append(k)
if reverse:
self.grid[r].reverse()
# assign top and bottom keys
for r in range(self.height - 1):
up = r - 1
down = r + 1
for c in range(0, max_len):
k = self.grid[r][c]
u = self.grid[up][c]
d = self.grid[down][c]
# fix left & right in reversed layouts
if reverse:
tmp: Keycap = k.left
k.left = k.right
k.right = tmp
k.up = u
k.down = d
u.down = k
d.up = k
# bake in the reversible keys
for k1 in self.letter_index.values():
for k2 in k1.deciphers_to:
k2.encrypts_to.append(k1)
[(key, key.bake_surround(), key.surround) for key in self.letter_index.values()]
def surround(self, letter: chr, full: bool = False) -> List[chr]:
"""
Returns the 8 characters surrounding the letter starting with the one
to the right and proceeding counterclockwise
Param `full` controls whether or not to display the blank keys
"""
return [
k.name for k in self.letter_index[letter].surround if not k.blank or full
]
def encode_chr(
self, ch: chr, direction: chr = "R", drop: bool = True, rnd: bool = False
) -> str:
"""
Encodes a single character and returns the output possibilities
Params drop and direction are the same as in Cipher.encode_text
except direction also has option '0' to echo back the input character if it was found
"""
direction = direction.upper().strip()[0]
letter: Keycap = self.letter_index.get(ch)
if letter:
s = letter.__getattribute__(direction_methods[direction])
if rnd:
random.shuffle(s)
return cap_list_str(s)
if drop:
return ""
return ch
def encode_text(
self,
text: str,
drop: bool = True,
direction: chr = "r",
rnd: bool = True,
limit_possibilities: int = 8,
start: int = 0,
jump: int = 1,
) -> List[str]:
"""
This is where the magic occurs. Encode or decode the text.
text: the text to run through the algorithm
drop: set true to ignore non-alphabetic characters; false includes them
direction: 'R', 'E', or 'D' for reversible, encrypt, or decipher; '0' to echo the input
rnd: if True, scrambles the possibilities for each character and ignores start and jump
limit_possibilities: how many possibilities are returned
start: start index for which possibility is chosen
jump: how much to jump—set to 0 to always choose the start possibility
:returns:
A list:
row 0 is the input text with the extra characters dropped or included as specified by drop
the rest of the rows are the possibilities
the start index, when applicable, increments by 1 on each new row
The output will look grid-like if each row is separated by \n
"""
# prep work
results: List[str] = [
"".join([self.encode_chr(c, "0", drop) for c in text.strip().lower()])
]
if direction == "0": # echo the input
return results * 2 # ensures that the results[1] is a valid index
# get possibilities for each character
possibilities: List[str] = [
self.encode_chr(c, direction, drop, rnd) for c in results[0]
]
return results + [
"".join( # create string for each possible result
[
possibilities[char_no][
(start + offset + (char_no * jump))
% len(possibilities[char_no])
]
for char_no in range(
len(results[0])
) # each character in stripped input phrase
]
)
for offset in range(limit_possibilities)
]
def draw_keyboard(self) -> None:
"""
Prints the keyboard layout to stdout
"""
# Must print row-by-row
for row in self.grid:
tmp: List[List[str]] = [[], [], [], [], []]
for letter in row:
for i, o in enumerate(letter.draw(False)):
tmp[i].append(o)
for line in tmp:
p(" ".join(line))
p("\n")
def display_possibilities(
possibilities: List[str], only_one: bool = False, separator: str = "-"
) -> str:
if only_one:
return possibilities[
1
] # return the first possibility (index 0 is the input phrase)
inp: str = possibilities[0]
possibilities.append(inp) # repeat the input at the end for human-readable output
if s := separator.replace("\n", "").replace("\t", ""):
s = (s * (len(inp) // len(s) + 1))[: len(inp)]
possibilities.insert(1, s)
possibilities.insert(
-1, s
) # this has counter-intuitive behavior but it works for this usage
return "\n".join(possibilities)
nav_guide = ("❇", ["➡️", "↗️", "⬆️", "↖️", "⬅️", "↙️", "⬇️", "↘️"])
direction_methods: Dict[chr, str] = {
"R": "surround",
"E": "encrypts_to",
"D": "deciphers_to",
"0": "name",
}
def letter_test_grid(c: Cipher, l: chr) -> str: # noqa ignore short variable name 'l'
"""
Generates a grid of letters that either appear in the surround of l or have
l in their surrounding. Exclamation points are appended to lines for
letters that contain l in their surroundings but do not surround l.
Question marks added to lines for letters in the surrounding of l that do
not also contain l in their surrounding.
"""
o: List[str] = []
ring: List[str] = c.surround(l, True)
o.append(str((l, ring)))
o.append(str(nav_guide) + "🔛")
for letter in ALPHABET:
s = c.surround(letter)
if l in s or letter in ring:
o.append(
str((letter, c.surround(letter, True)))
+ f"\t{'‼' if letter not in ring else ''}"
+ f"\t{'❔' if l not in s else ''}"
)
o.append(str(nav_guide) + "🔛")
o.append(str((l, ring)))
return "\n".join(o)
@click.command()
@click.argument("text", type=click.File(), nargs=1)
@click.option(
"-k",
"--layout",
default="QWERTY",
type=click.STRING,
help="""
The layout of the keyboard you use for the cipher.
Technically, this is the name of a file in the layouts directory.
The -k shortname stands for keyboard and defaults to QWERTY.
""",
)
@click.option(
"--only-one",
is_flag=True,
help="""
Limit the output to a single substitution.
If this flag is not set, then a grid of possibilities will be displayed
(setting this flag negates the usefulness of setting --barrier).
""",
)
@click.option(
"-sep",
"--barrier",
type=click.STRING,
default="-",
help="""
Separate input from output with the character(s) supplied here.
Default is a fence of hyphens.
""",
)
@click.option(
"--random/--fixed",
"rnd",
default=True,
help="""
Pass --fixed to always order the output possibilities in a consistent order.
Otherwise, the possible substitutions for each letter are presented in a random order.
If the step parameter is changed with random output order, the results may be
less random than expected.
""",
)
@click.option(
"--direction",
"-j", # stands for jump
"skip",
type=click.INT,
default=1,
help="""
How many positions to rotate between each subsequent letter.
Negative values move clockwise and positive count clockwise.
This one in particular will reduce randomness if it is set to
values other than 1 or -1.
A value of 0 here where --fixed is true will return the key that
is at a constant offset from the right.
(The j stands for jump)
""",
)
@click.option(
"--offset",
"--start",
"start",
type=click.INT,
default=0,
help="""
When --fixed is set, this controls the offset of the first
letter of the output by moving it n spaces from the key directly
to the right. Use a negative number to move clockwise or, to move
counter-clockwise, use a positive number.
0 starts directly to the right.
""",
)
@click.option(
"--strip/--include",
default=True,
help="""
Strip out [default] or pass through characters that are not in the cipher.
Passing them through provides hints that make manual decoding easier.
""",
)
# These are placed at the end of the options so the --help output is prettier
@click.option(
"--encrypt",
"direction",
flag_value="E",
help="""Generate possibilities that can decipher to TEXT""",
)
@click.option(
"--reversible",
"direction",
flag_value="R",
default=True,
help="""[DEFAULT] Generate fully-reversible options""",
)
@click.option(
"--decipher",
"direction",
flag_value="D",
help="""Display possible cleartext letters for TEXT""",
)
def shark(
text,
layout: str = "QWERTY",
only_one: bool = False,
barrier: str = "*",
direction: chr = "R",
rnd: bool = True,
skip: int = 1,
start: int = 0,
strip: bool = False,
):
"""
Runs TEXT through the shark cipher and displays the result to stdout
To read from stdin rather than a specific TEXT file, use - for TEXT.
For specific recipes on CLI usage, see the readme.
"""
c = Cipher(layout)
for line in text:
p(
display_possibilities(
c.encode_text(line, strip, direction, rnd, start=start, jump=skip),
only_one,
barrier,
)
)
if __name__ == "__main__":
shark()