-
Notifications
You must be signed in to change notification settings - Fork 0
/
53.maximum-subarray.cpp
73 lines (71 loc) · 1.36 KB
/
53.maximum-subarray.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
/*
* @lc app=leetcode id=53 lang=cpp
*
* [53] Maximum Subarray
*
* https://leetcode.com/problems/maximum-subarray/description/
*
* algorithms
* Easy (49.61%)
* Likes: 25580
* Dislikes: 1162
* Total Accepted: 2.8M
* Total Submissions: 5.6M
* Testcase Example: '[-2,1,-3,4,-1,2,1,-5,4]'
*
* Given an integer array nums, find the contiguous subarray (containing at
* least one number) which has the largest sum and return its sum.
*
* A subarray is a contiguous part of an array.
*
*
* Example 1:
*
*
* Input: nums = [-2,1,-3,4,-1,2,1,-5,4]
* Output: 6
* Explanation: [4,-1,2,1] has the largest sum = 6.
*
*
* Example 2:
*
*
* Input: nums = [1]
* Output: 1
*
*
* Example 3:
*
*
* Input: nums = [5,4,-1,7,8]
* Output: 23
*
*
*
* Constraints:
*
*
* 1 <= nums.length <= 10^5
* -10^4 <= nums[i] <= 10^4
*
*
*
* Follow up: If you have figured out the O(n) solution, try coding another
* solution using the divide and conquer approach, which is more subtle.
*
*/
// @lc code=start
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int ans =0, cur =0,maxelem = INT_MIN;
for(int i:nums){
cur +=i;
cur = max(0,cur);
ans = max(cur,ans);
maxelem = max(i,maxelem);
}
return(maxelem<0)? maxelem:ans;
}
};
// @lc code=end