-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain_MGChaosPrediction.m
61 lines (51 loc) · 2.64 KB
/
main_MGChaosPrediction.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
%% Mackey-Glass Chaotic Time Series Prediction, Experiment 5 in the Patch Learning paper
%% Prof. Dongrui Wu ([email protected])
%% Huazhong University of Science and Technology, Wuhan, China
clc; clearvars; close all; rng('default'); warning off all;
nMFs=2; nPatches=2; nEpoches=100;
%% Load the Mackey-Glass Chaotic Time Series data
load mgdata.dat
time = mgdata(:, 1); x = mgdata(:, 2);
trainData = [x(1:600) x(7:606) x(13:612) x(19:618)];
testData = [x(601:1100) x(607:1106) x(613:1112) x(619:1118)];
X=trainData(:,1:end-1); y=trainData(:,end);
RMSEs=zeros(1,nPatches);
for i=1:nPatches+1
% Patch learning
YPL=PL_ANFIS(X,y,testData(:,1:end-1),i-1,nMFs,nEpoches);
error1=testData(:,end)-YPL(:,end);
RMSEs(1,i)=sqrt(mean(error1.^2));
% Bagging
YB2=Bagging_ANFIS(X,y,testData(:,1:end-1),i,nMFs,nEpoches);
error2=testData(:,end)-YB2; RMSEs(2,i)=sqrt(mean(error2.^2));
% LSBoost
mdl=fitrensemble(X,y,'NumLearningCycles',i);
YB3=predict(mdl,testData(:,1:end-1));
error3=testData(:,end)-YB3; RMSEs(3,i)=sqrt(mean(error3.^2))
figure;
set(gcf,'DefaulttextFontName','times new roman','DefaultaxesFontName','times new roman','defaultaxesfontsize',8,...
'defaulttextfontsize',9,'Position',[200 100 300 250]);
subplot(211);
plot(testData(:,end),'k-','linewidth',1); hold on; plot(YPL(:,end),'b--','linewidth',1);
plot(YB2,'r-.','linewidth',1); plot(YB3,'g:','linewidth',1);
xlabel('$t$','interpreter','latex'); ylabel('$x(t)$','interpreter','latex');
set(gca,'ylim',[.4 1.8]);
h=legend('True','PL','Bagging','LSBoost','location','east');
set(h,'fontsize',8);
title(['Predictions; $L=' num2str(i-1) '$ in PL'],'interpreter','latex');
subplot(212);
plot(error1,'b--','linewidth',.8); hold on; plot(error2,'r-.','linewidth',.8); plot(error3,'g:','linewidth',.8);
xlabel('$t$','interpreter','latex'); ylabel('Error','interpreter','latex');
set(gca,'ylim',[-.35 .2]);
title(['Prediction errors; $L=' num2str(i-1) '$ in PL'],'interpreter','latex');
h=legend(['PL, RMSE=' num2str(sqrt(mean(error1.^2)),'%.4f') ', $\ell$=' num2str(i^.25*sqrt(mean(error1.^2)),'%.4f')],...
['Bagging, RMSE=' num2str(sqrt(mean(error2.^2)),'%.4f')],...
['LSBoost, RMSE=' num2str(sqrt(mean(error3.^2)),'%.4f')],'location','south');
set(h,'Box','off','position',get(h,'position')+[0 -0.02 0 0],'interpreter','latex');
end
%% PL, 3 patches
YPL=PL_ANFIS(X,y,testData(:,1:end-1),3,nMFs,nEpoches);
error1=testData(:,end)-YPL(:,end);
RMSEs(1,4)=sqrt(mean(error1.^2));
%% The loss
ell=RMSEs(1,:).*(1:size(RMSEs,2)).^(.25)