-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfunctions_matching.py
1060 lines (894 loc) · 52.3 KB
/
functions_matching.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import numpy as np
from sklearn.preprocessing import scale
from scipy.interpolate import interp1d
from scipy import signal
import cv2
from functions_misc import add_edges, interp_trace, normalize_matrix
import h5py
import pandas as pd
import os
import datetime
import matplotlib.pyplot as plt
from scipy.ndimage import label
def align_traces_maxrate(frame_rate_1, frame_rate_2, data_1, data_2, sign_vector, frame_times, cricket, z=1):
"""Align traces temporally based on whichever one has the fastest frame rate"""
# determine which rate is highest
max_rate = np.argmax([frame_rate_1, frame_rate_2])
# select it as the target for interpolation
g = [frame_rate_1, frame_rate_2][max_rate]
# # make both time vectors start at 0
# frame_times = [el-el[0] for el in frame_times]
# interpolate one trace and normalize the other depending on the max_rate
if max_rate == 0:
# expand the frames to interpolate from
target_frames = add_edges(frame_times[0], points=100)
y_motive = sign_vector[2] * data_1[:, sign_vector[0]]
y_bonsai = interp_motive(sign_vector[3] * data_2[:, sign_vector[1]], frame_times[1], target_frames)
y_cricket = interp_motive(sign_vector[3] * cricket[:, sign_vector[1]], frame_times[1], target_frames)
if z == 1:
height = data_1[:, 2]
else:
height = None
else:
target_frames = add_edges(frame_times[1], points=100)
# target_frames = frame_times[1]
y_motive = interp_motive(sign_vector[2] * data_1[:, sign_vector[0]], frame_times[0], target_frames)
y_bonsai = sign_vector[3] * data_2[:, sign_vector[1]]
y_cricket = sign_vector[3] * cricket[:, sign_vector[1]]
if z == 1:
height = interp_motive(data_1[:, 2], frame_times[0], target_frames)
else:
height = None
y1 = scale(y_motive)
y2 = scale(y_bonsai)
# calculate the cross-correlation for analysis
acor = np.correlate(y1, y2, mode='full')
# return the shift, the matched traces and the rate
return np.int(np.round(np.argmax(acor) - len(y2))), y_motive, y_bonsai, g, y_cricket, height, target_frames
def align_traces_motive(data_1, data_2, sign_vector, frame_times, cricket, z=1):
"""Align traces temporally based on the data_1, which is expected to be from motive"""
# interpolate the bonsai trace
# expand the frames to interpolate from
target_frames = add_edges(frame_times[0], points=100)
y_motive = sign_vector[2] * data_1[:, sign_vector[0]]
y_bonsai = interp_motive(sign_vector[3] * data_2[:, sign_vector[1]], frame_times[1], target_frames)
y_cricket = interp_motive(sign_vector[3] * cricket[:, sign_vector[1]], frame_times[1], target_frames)
if z == 1:
height = data_1[:, 2]
else:
height = None
y1 = scale(y_motive)
y2 = scale(y_bonsai)
# calculate the cross-correlation for analysis
acor = np.correlate(y1, y2, mode='full')
# return the shift, the matched traces and the rate
return np.int(np.round(np.argmax(acor) - len(y2))), y_motive, y_bonsai, y_cricket, height, frame_times[0]
def interp_motive(position, frame_times, target_times):
"""Interpolate a trace by building an interpolant"""
# filter the values so the interpolant is trained only on sorted frame times
sorted_frames = np.hstack((True, np.invert(frame_times[1:] <= frame_times[:-1])))
frame_times = frame_times[sorted_frames]
position = position[sorted_frames]
# also remove any NaN frames
notnan = ~np.isnan(position)
frame_times = frame_times[notnan]
position = position[notnan]
# create the interpolant
interpolant = interp1d(frame_times, position, kind='cubic', bounds_error=False, fill_value=np.mean(position))
return interpolant(target_times)
def homography(from_data, to_data, target_data):
"""Compute the homography transformation between the data sets via opencv"""
# find the homography transformation
h, mask = cv2.findHomography(from_data, to_data, method=cv2.RANSAC)
# make the transformed data homogeneous for multiplication with the affine
transformed_data = np.squeeze(cv2.convertPointsToHomogeneous(target_data))
# apply the homography matrix
return np.matmul(transformed_data, h.T)
def partialaffine(from_data, to_data, target_data):
"""Compute the partial 2D affine transformation between the data sets via opencv"""
# calculate an approximate affine
affine_matrix, inliers = cv2.estimateAffinePartial2D(from_data, to_data, ransacReprojThreshold=1,
maxIters=20000, confidence=0.95,
refineIters=100, method=cv2.LMEDS)
assert affine_matrix is not None, "Affine transform was not possible"
# print('Percentage inliers used:' + str(np.sum(inliers)*100/from_data.shape[0]))
# make the transformed data homogeneous for multiplication with the affine
transformed_data = np.squeeze(cv2.convertPointsToHomogeneous(target_data))
# apply the affine matrix
return np.matmul(transformed_data, affine_matrix.T)
def affine(from_data, to_data, target_data):
"""Compute the 2D affine transformation between the data sets via opencv"""
# calculate an approximate affine
affine_matrix, inliers = cv2.estimateAffine2D(from_data, to_data, ransacReprojThreshold=3,
maxIters=20000, refineIters=0, method=cv2.LMEDS)
print('Percentage inliers used:' + str(np.sum(inliers) * 100 / from_data.shape[0]))
# make the transformed data homogeneous for multiplication with the affine
transformed_data = np.squeeze(cv2.convertPointsToHomogeneous(target_data))
# apply the affine matrix
return np.matmul(transformed_data, affine_matrix.T)
def undistort(data_2d, data_3d, target_data):
"""Undistort points from a 2D camera based on matching 3D data via opencv"""
# use the calibrateCamera function to get the camera matrix
test_constant = (cv2.CALIB_USE_INTRINSIC_GUESS | cv2.CALIB_FIX_ASPECT_RATIO |
cv2.CALIB_FIX_K1 | cv2.CALIB_FIX_K2 | cv2.CALIB_FIX_K3 |
cv2.CALIB_FIX_K4 | cv2.CALIB_FIX_K5 | cv2.CALIB_FIX_K6)
# test_constant = 0
# test_constant = cv2.CALIB_FIX_PRINCIPAL_POINT
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera([data_3d.astype('float32')],
[data_2d.astype('float32')],
(1280, 1024), None, None,
flags=test_constant)
# undistort the camera points
return np.squeeze(cv2.undistortPoints(np.expand_dims(target_data, 1), mtx, dist))
def match_traces(data_3d, data_2d, frame_time_list, coordinate_list, cricket):
"""Match the traces given from motive and bonsai by aligning them temporally and then spatially, also providing
the transformed cricket position data"""
# allocate memory for the aligned traces
aligned_traces = []
# allocate memory for the cricket traces
aligned_cricket = []
# initialize the first shift very high in case there's an error finding the actual shift
first_shift_idx = 1000
# for all the coordinate sets (i.e. dimensions)
for count, sets in enumerate(coordinate_list):
shift_idx, ya, yb, cr, h, t = align_traces_motive(data_3d, data_2d, sets, frame_time_list, cricket, 1 - count)
if count == 0:
first_shift_idx = shift_idx
# print('Temporal shift:' + str(shift_idx))
# save the shifted traces
# depending on the sign of the shift, choose which trace to shift
if first_shift_idx > 0:
ya = ya[first_shift_idx:]
if count == 0:
y = h[first_shift_idx:]
shifted_time = t[first_shift_idx:]
else:
yb = yb[-first_shift_idx:]
cr = cr[-first_shift_idx:]
if count == 0:
y = h
shifted_time = t
assert np.sign(first_shift_idx) == np.sign(shift_idx), 'shifts have a different sign'
aligned_traces.append([ya, yb])
aligned_cricket.append(cr)
# use open cv to obtain a transformation matrix of the aligned traces
# assemble the data to use for the calculation
opencv_3d = np.array([aligned_traces[0][0], aligned_traces[1][0], y]).astype('float32')
opencv_2d = np.array([aligned_traces[0][1], aligned_traces[1][1]]).astype('float32')
opencv_cricket = np.array(aligned_cricket).astype('float32')
# match their sizes
min_size = np.min([opencv_3d.shape[1], opencv_2d.shape[1]])
return opencv_3d[:, :min_size].T, opencv_2d[:, :min_size].T, shifted_time, opencv_cricket[:, :min_size].T
def match_calcium(calcium_path, sync_path, kinematics_data, frame_bounds, rig=None, trials=None):
"""Match the kinematic and calcium data provided based on the sync file provided"""
# load the calcium data
with h5py.File(calcium_path, mode='r') as f:
calcium_data = np.array(f['calcium_data'])
# if there are no ROIs, skip
if (type(calcium_data) == np.ndarray) and (calcium_data == 'no_ROIs'):
return
# # get the time vector from bonsai
# bonsai_time = filtered_traces.time
# get the number of frames from the bonsai file
# n_frames_bonsai_file = kinematics_data.shape[0]
# n_frames_bonsai_file = frame_bounds[2]
# load the sync data
# sync_data = pd.read_csv(sync_path, names=['Time', 'mini_frames', 'bonsai_frames'])
sync_data = pd.read_csv(sync_path)
if rig in ['VR', 'VScreen', 'VTuning']:
sync_data.columns = ['Time', 'projector_frames', 'bonsai_frames', 'optitrack_frames', 'mini_frames']
# get the frame times from the sync file
frame_times_bonsai_sync = sync_data.loc[
np.concatenate(([0], np.diff(sync_data.projector_frames) > 0)) > 0, 'Time'].to_numpy()
else:
sync_data.columns = ['Time', 'mini_frames', 'bonsai_frames']
# get the frame times from the sync file
frame_times_bonsai_sync = sync_data.loc[
np.concatenate(([0], np.diff(sync_data.bonsai_frames) > 0)) > 0, 'Time'].to_numpy()
# get the number of miniscope frames on the sync file
n_frames_mini_sync = np.sum(np.diff(sync_data.mini_frames) > 0)
# match the sync frames with the actual miniscope frames
frame_times_mini_sync = sync_data.loc[
np.concatenate(([0], np.diff(sync_data.mini_frames) > 0)) > 0, 'Time'].to_numpy()
# find the gaps between bonsai frames, take the frames only after the background subtraction gap
# bonsai_ifi = np.argwhere(np.diff(sync_data.bonsai_frames) > 0)
# bonsai_start_frame = bonsai_ifi[np.argwhere(np.diff(bonsai_ifi, axis=0) > 1000)[0][0] + 1][0]
# n_frames_bonsai_sync = np.sum(np.diff(sync_data.bonsai_frames.to_numpy()[bonsai_start_frame:]) > 0)
# compare to the frames from bonsai and adjust accordingly (if they don't match, show a warning)
# plot_2d([[np.diff(frame_times_bonsai_sync[frame_bounds[0]:]),np.diff(kinematics_data['time_vector'].to_numpy())]])
# if frame_times_bonsai_sync.shape[0] < n_frames_bonsai_file:
# get the difference in frames between the full video and sync:
delta_sync = frame_bounds.loc[0, 'original_length'] - frame_times_bonsai_sync.shape[0]
# if frame_times_bonsai_sync.shape[0] < frame_bounds.loc[0, 'original_length']:
# if the difference is higher than 0, trim the data from the end (not the sync)
if delta_sync > 0:
print('File %s has less sync frames than bonsai frames, trimmed bonsai from end' % sync_path)
# n_frames_bonsai_file = frame_times_bonsai_sync.shape[0]
# kinematics_data = kinematics_data[:n_frames_bonsai_file]
kinematics_data = kinematics_data[:-(delta_sync - 1)]
# frame_times_bonsai_sync = \
# frame_times_bonsai_sync[-(frame_bounds.loc[0, 'original_length']-frame_bounds.loc[0, 'start']):
# -(frame_bounds.loc[0, 'original_length']-frame_bounds.loc[0, 'end']+1)-delta_sync]
# frame_times_bonsai_sync = \
# frame_times_bonsai_sync[-(frame_bounds.loc[0, 'original_length']-frame_bounds.loc[0, 'start']):
# -(frame_bounds.loc[0, 'original_length']-frame_bounds.loc[0, 'end']+1)]
# else:
# # frame_times_bonsai_sync = frame_times_bonsai_sync[-n_frames_bonsai_file:]
# frame_times_bonsai_sync = \
# frame_times_bonsai_sync[-(frame_bounds.loc[0, 'original_length']-frame_bounds.loc[0, 'start']):
# -(frame_bounds.loc[0, 'original_length']-frame_bounds.loc[0, 'end']+1)]
# determine the indexes to trim frame_times_bonsai_sync to match the trimming of the data
trim_start = frame_bounds.loc[0, 'start']
trim_end = frame_bounds.loc[0, 'end'] - 1
# trim the sync frames to match the data from both ends (due to preprocessing here)
frame_times_bonsai_sync = frame_times_bonsai_sync[trim_start:trim_end]
# frame_times_bonsai_sync = \
# frame_times_bonsai_sync[-(frame_bounds.loc[0, 'original_length']-frame_bounds.loc[0, 'start']):
# -(frame_bounds.loc[0, 'original_length']-frame_bounds.loc[0, 'end'])]
if trials is not None:
# interpolate the bonsai traces to match the mini frames
matched_bonsai = kinematics_data.drop(['time_vector'] + list(trials.columns), axis=1).apply(interp_trace,
raw=False,
args=(
frame_times_bonsai_sync,
frame_times_mini_sync))
# deal with trial numbers
# first reset the inter-stim intervals
trial_nums = matched_bonsai.trial_num.to_numpy()
trial_nums[trial_nums < -500] = 0
# Find where trials occur, and reassign their index
trials = np.argwhere(trial_nums != 0)[0]
breaks = np.where(np.diff(trials) != 1)[0] + 1 # add 1 to compensate for the diff
split_trials = np.array_split(trials, breaks)
for trial_num, idxs in enumerate(split_trials):
trial_nums[idxs] = trial_num + 1 # Compensate for zero indexing
matched_bonsai.trial_num = trial_nums
# now that the trials are reassigned, add the trial data
matched_bonsai = assign_trial_parameters(matched_bonsai, trials)
else:
# interpolate the bonsai traces to match the mini frames
matched_bonsai = kinematics_data.drop(['time_vector'], axis=1).apply(interp_trace, raw=False,
args=(frame_times_bonsai_sync,
frame_times_mini_sync))
# round the quadrant vector as it should be discrete
quadrant_columns = [el for el in matched_bonsai.columns if ('_quadrant' in el)]
for el in quadrant_columns:
matched_bonsai[el] = np.round(matched_bonsai[el])
# add the correct time vector from the interpolated traces
matched_bonsai['time_vector'] = frame_times_mini_sync
# if the calcium data has less frames than the ones detected during triggers, show a warning
delta_frames = n_frames_mini_sync - calcium_data.shape[1]
if delta_frames > 0:
# show the warning
print("File %s has %s calcium frames less than triggers detected" % (os.path.basename(calcium_path),
str(delta_frames)))
# trim matched bonsai
matched_bonsai = matched_bonsai.iloc[:-delta_frames, :]
# trim the data to the frames within the experiment
calcium_data = calcium_data[:, :n_frames_mini_sync].T
# also trim the data to the beginning of the video tracking
# find the index of the closest timestamp to the beginning of the tracking file
first_tracking_frame = np.argmin(np.abs(frame_times_bonsai_sync[0] - frame_times_mini_sync))
calcium_data = calcium_data[first_tracking_frame:, :]
matched_bonsai = matched_bonsai.iloc[first_tracking_frame:, :].reset_index(drop=True)
# print a single dataframe with the calcium matched positions and timestamps
calcium_dataframe = pd.DataFrame(calcium_data,
columns=['_'.join(('cell', str(el))) for el in range(calcium_data.shape[1])])
# concatenate both data frames
full_dataframe = pd.concat([matched_bonsai, calcium_dataframe], axis=1)
# reset the time vector
old_time = full_dataframe['time_vector']
full_dataframe['time_vector'] = np.array([el - old_time[0] for el in old_time])
return full_dataframe
def match_cells(match_path):
"""Load the cell matching info if it exists"""
try:
with h5py.File(match_path, 'r') as f:
# load the variables of interest
assignments = np.array(f['assignments'])
# f.create_dataset('matchings', data=np.array(matchings))
date_list = np.array(f['date_list']).astype(str)
except OSError:
return empty_dataframe()
# turn into a data frame
cell_matches = pd.DataFrame(data=assignments, columns=date_list)
return cell_matches
def empty_dataframe(column_label='empty'):
"""Return an empty dataframe"""
return pd.DataFrame(data=[], columns=[column_label])
def match_motive(motive_traces, sync_path, kinematics_data):
"""Match the motive and video traces based on the sync file"""
# # get the number of frames from the bonsai file
# n_frames_bonsai_file = kinematics_data.shape[0]
# load the sync data
sync_data = pd.read_csv(sync_path, names=['Time', 'projector_frames', 'bonsai_frames',
'optitrack_frames', 'mini_frames'])
# # get the number of miniscope frames on the sync file
# n_frames_motive_sync = np.sum(np.abs(np.diff(sync_data.projector_frames)) > 0)
# match the sync frames with the actual miniscope frames
frame_times_motive_sync = sync_data.loc[
np.concatenate(([0], np.abs(np.diff(sync_data.projector_frames)) > 0)) > 0, 'Time'].to_numpy()
# get the number of motive frames
n_frames_motive_sync = frame_times_motive_sync.shape[0]
# trim the trace to where the tracking starts
first_frame = np.argwhere(motive_traces['time_m'])[0][0]
trimmed_traces = motive_traces.iloc[first_frame:n_frames_motive_sync, :].reset_index(drop=True)
# # get the number of frames in motive (assuming the extras in sync are at the end and therefore will be cropped)
# n_frames_motive_sync = trimmed_traces.shape[0]
# also trim the frame times (assuming frame 1 in both is the same)
frame_times_motive_sync = frame_times_motive_sync[first_frame:n_frames_motive_sync + first_frame]
# plot_2d([[sync_data['projector_frames']]], dpi=100)
# plot_2d([[sync_data['projector_frames'], sync_data['bonsai_frames']]], dpi=100)
# get the frame times for bonsai
frame_times_bonsai_sync = sync_data.loc[
np.concatenate(([0], np.diff(sync_data.bonsai_frames) > 0)) > 0,
'Time'].to_numpy() # [-n_frames_bonsai_file:]
# trim the frame times to start the same time as motive
bonsai_start = np.argmin(np.abs(frame_times_motive_sync[0] - frame_times_bonsai_sync))
frame_times_bonsai_sync = frame_times_bonsai_sync[bonsai_start:]
# get the number of frames from bonsai
n_frames_bonsai_file = frame_times_bonsai_sync.shape[0]
# check if there are extra bonsai frames (most likely at the end) and trim them if so
if kinematics_data.shape[0] < n_frames_bonsai_file:
n_frames_bonsai_file = kinematics_data.shape[0]
frame_times_bonsai_sync = frame_times_bonsai_sync[:n_frames_bonsai_file]
# trim the bonsai data accordingly (assumption is that the frames go all the way to the end)
kinematics_data = kinematics_data.iloc[-n_frames_bonsai_file:].reset_index(drop=True)
# interpolate the bonsai traces to match the mini frames
matched_bonsai = kinematics_data.drop(['time_vector', 'mouse', 'datetime'],
axis=1).apply(interp_trace, raw=False, args=(frame_times_bonsai_sync,
frame_times_motive_sync))
# add the correct time vector from the interpolated traces
matched_bonsai['time_vector'] = frame_times_motive_sync
matched_bonsai['mouse'] = kinematics_data.loc[0, 'mouse']
matched_bonsai['datetime'] = kinematics_data.loc[0, 'datetime']
# trim the motive data
# # if the motive data has less frames than the ones detected during triggers, show a warning
# delta_frames = n_frames_motive_sync - motive_traces.shape[0]
# concatenate both data frames
full_dataframe = pd.concat([matched_bonsai, trimmed_traces.drop(['time_m'], axis=1)], axis=1)
# reset the time vector
old_time = full_dataframe['time_vector']
full_dataframe['time_vector'] = np.array([el - old_time[0] for el in old_time])
return full_dataframe
def assign_trial_parameters(motive_traces, trial_list):
# add columns for the motive_traces df for the trial params
param_cols = list(trial_list.columns)
for pc in param_cols:
motive_traces[pc] = -1000
# Now assign the trial parameters to the motive_traces dataframe by matching trial numbers
for index, row in trial_list.iterrows():
trial_num = index + 1
motive_traces.loc[motive_traces.trial_num == trial_num, param_cols] = row[param_cols].to_list()
return motive_traces
def consecutive(data, stepsize=1):
return np.split(data, np.where(np.diff(data) != stepsize)[0] + 1)
def align_nonaffine(input_traces):
"""For testing nonaffines transforms for automatic data alignment"""
# copy the traces
output_traces = input_traces.copy()
# Grab the mouse data
bonsai_position = input_traces[['mouse_x', 'mouse_y']].to_numpy()
motive_position = input_traces[['mouse_z_m', 'mouse_x_m']].to_numpy()
# Low-pass filter the data
b, a = signal.butter(5, 0.01)
filt_bp = signal.filtfilt(b, a, bonsai_position[120:-120], axis=0)
filt_mp = signal.filtfilt(b, a, motive_position[120:-120], axis=0)
# Apply manual shift seen from other traces
shift = [0.085, -0.02]
filt_bp_shift = filt_bp + shift
# fig = plot_2d([[filt_mp, filt_bp_shift]], rows=1, columns=1, dpi=100)
# fig.suptitle('Manual shift')
# plt.show()
# Use the camera matrix and distortion coefficients from find_lens_distortion.py
# to correct the trace
camMtx = np.array([[1.0078195e+00, 0.0000000e+00, 9.8388788e-05],
[0.0000000e+00, 1.0078195e+00, 7.5000345e-05],
[0.0000000e+00, 0.0000000e+00, 1.0000000e+00]])
distCoeffs = np.array([0.00000000e+00, 0.00000000e+00, -6.54237602e-06, -9.86002297e-06, 0.00000000e+00])
# filt_bp_udist = np.squeeze(cv2.undistortPoints(np.expand_dims(filt_bp, 1), camMtx, distCoeffs))
# fig = plot_2d([[filt_mp, filt_bp_udist+shift]], rows=1, columns=1, dpi=100)
# fig.suptitle('Undistort + manual shift')
# plt.show()
# # Get spatial correlation between undistorted DLC tracking and motive tracking to automatically align.
# # Constrain this to only the center parts of the image for best alignment
# # TODO - make this better, is hacky
# motive_sections = np.argwhere((((filt_mp[:, 0] >= -0.1) & (filt_mp[:, 0] <= 0.2)) &
# ((filt_mp[:, 1] >= -0.2) & (filt_mp[:, 1] <= 0))))
# # motive_subset_idxs = consecutive(np.squeeze(motive_sections))
# filt_mp_sub = filt_mp[np.squeeze(motive_sections)]
# filt_bp_udist_sub = filt_bp_udist[np.squeeze(motive_sections)]
#
# fig = plot_2d([[filt_mp_sub, filt_bp_udist_sub]], rows=1, columns=1, dpi=100)
# fig.suptitle('Undistorted subsets in central FOV')
# plt.show()
# corr = correlate2d(filt_mp_sub, filt_bp_udist_sub, mode='same')
# # try way from scipy docs
# row, col = np.unravel_index(np.argmax(corr), corr.shape) # find the match
# shift = filt_mp_sub[row, :] - filt_bp_udist_sub[row, :]
# # Find max in each column
# shift_idx = np.argmax(corr, axis=0)
# x_shift = filt_mp_sub[shift_idx[0], :] - filt_bp_udist_sub[shift_idx[0], :]
# y_shift = filt_mp_sub[shift_idx[1], :] - filt_bp_udist_sub[shift_idx[1], :]
# # shift = [x_shift, y_shift]
#
# # Align bonsai/DLC to motive coordinates based on spatial correlation
# bonsai_position_new = filt_bp_udist.copy()
# bonsai_position_new[:, 0] = bonsai_position_new[:, 0] + y_shift
# bonsai_position_new[:, 1] = bonsai_position_new[:, 1] + x_shift
#
# fig = plot_2d([[filt_mp, filt_bp_udist+shift]], rows=1, columns=1, dpi=100)
# fig.suptitle('Undistort + spatial correlation shift')
# plt.show()
# # Apply partial affine transform to the lens corrected trace
# filt_bp_udist_affine = partialaffine(filt_bp_udist, filt_mp, filt_bp_udist)
# fig = plot_2d([[filt_mp, filt_bp_udist_affine]], rows=1, columns=1, dpi=100)
# plt.show()
# # Do partial affine transformation on the data
# filt_bp_affine = partialaffine(filt_bp, filt_mp, filt_bp)
#
# fig = plot_2d([[filt_mp, filt_bp_affine]], rows=1, columns=1, dpi=100)
# plt.show()
# # Do affine transformation on the data
# filt_bp_affine = affine(filt_bp, filt_mp, filt_bp)
#
# fig = plot_2d([[filt_mp, filt_bp_affine]], rows=1, columns=1, dpi=100)
# plt.show()
# # Try undistort
# filt_mp3 = np.zeros((filt_mp.shape[0], filt_mp.shape[1]+1))
# filt_mp3[:, :-1] = filt_mp
# filt_bp_udist = undistort(filt_bp_affine, filt_mp3, filt_bp_affine)
#
# fig = plot_2d([[filt_mp, filt_bp_udist]], rows=1, columns=1, dpi=100)
# plt.show()
# # Do rotation to the data
# theta = 7. * np.pi/180.
# Rmat = np.array([[np.cos(theta), -np.sin(theta)],
# [np.sin(theta), np.cos(theta)]])
# filt_bp_rot = np.matmul(filt_bp_homog, Rmat)
#
# fig = plot_2d([[filt_mp, filt_bp_rot]], rows=1, columns=1, dpi=100)
# plt.show()
# Adjust all DLC traces to match motive
# Note that unity traces (VR crickets) are already in scaled to motive space
# get the unique column names, excluding the letter at the end
column_names = np.unique([el[:-1] for el in input_traces.columns])
# for all the unique names
for column in column_names:
# if the name + x exists, transform
if column + 'x' in input_traces.columns:
# get the x and y data
new_data = input_traces[[column + 'x', column + 'y']].to_numpy()
# Apply the undistortion
new_data_udist = np.squeeze(cv2.undistortPoints(np.expand_dims(new_data, 1), camMtx, distCoeffs))
# add the translation
new_data_udist += shift
# replace the original data
output_traces[[column + 'x', column + 'y']] = new_data[:, :2]
return output_traces
def align_spatial(input_traces):
"""Align the temporally aligned bonsai and motive traces in space"""
# copy the traces
output_traces = input_traces.copy()
# Grab the mouse data
bonsai_position = input_traces[['mouse_x', 'mouse_y']].to_numpy()
motive_position = input_traces[['mouse_z_m', 'mouse_x_m']].to_numpy()
# Low-pass filter the data
b, a = signal.butter(5, 0.01)
filt_bp = signal.filtfilt(b, a, bonsai_position[120:-120], axis=0)
filt_mp = signal.filtfilt(b, a, motive_position[120:-120], axis=0)
# # Plot filtered but not shifted data
# fig = plot_2d([[filt_mp, filt_bp]], rows=1, columns=1, dpi=100)
# fig.suptitle('Manual shift')
# plt.show()
# Apply manual shift seen from other traces (calculated manually)
shift = [0.085, -0.02]
# fig = plot_2d([[filt_mp, filt_bp+shift]], rows=1, columns=1, dpi=100)
# fig.suptitle('Manual shift')
# plt.show()
# Use the camera matrix and distortion coefficients from find_lens_distortion.py
# to correct the trace
camMtx = np.array([[1.0078195e+00, 0.0000000e+00, 9.8388788e-05],
[0.0000000e+00, 1.0078195e+00, 7.5000345e-05],
[0.0000000e+00, 0.0000000e+00, 1.0000000e+00]])
distCoeffs = np.array([0.00000000e+00, 0.00000000e+00, -6.54237602e-06, -9.86002297e-06, 0.00000000e+00])
# filt_bp_udist = np.squeeze(cv2.undistortPoints(np.expand_dims(filt_bp, 1), camMtx, distCoeffs))
# fig = plot_2d([[filt_mp, filt_bp_udist+shift]], rows=1, columns=1, dpi=100)
# fig.suptitle('Undistort + manual shift')
# plt.show()
# Adjust all DLC traces to match motive
# Note that unity traces (VR crickets) are already in scaled to motive space
# get the unique column names, excluding the letter at the end
column_names = np.unique([el[:-1] for el in input_traces.columns])
# for all the unique names
for column in column_names:
# if the name + x exists, transform
if column + 'x' in input_traces.columns:
# get the x and y data
new_data = input_traces[[column + 'x', column + 'y']].to_numpy()
# Apply the undistortion
new_data_udist = np.squeeze(cv2.undistortPoints(np.expand_dims(new_data, 1), camMtx, distCoeffs))
# add the translation
new_data_udist += shift
# replace the original data
output_traces[[column + 'x', column + 'y']] = new_data[:, :2]
return output_traces
def match_motive_2(motive_traces, sync_path, kinematics_data):
"""Match the motive and video traces based on the sync file, updated to second gen rig"""
# find the first motive frame
first_motive = np.argwhere(motive_traces.loc[:, 'trial_num'].to_numpy() == 0)[0][0]
# exclude the last frame if it managed to include a single frame of 0
last_motive = -1 if motive_traces.loc[motive_traces.shape[0] - 1, 'trial_num'] == 0 else motive_traces.shape[0]
# trim the motive frames to the start and end of the experiment
trimmed_traces = motive_traces.iloc[first_motive:last_motive, :].reset_index(drop=True)
# TODO: remove this for regular trials, only here for 21.2.2022 ones
if np.max(trimmed_traces.loc[:, 'color_factor']) > 81:
trimmed_traces.loc[:, 'color_factor'] = trimmed_traces.loc[:, 'color_factor'] / 255
# normalize the number to 0 1 2 3 range
trimmed_traces.loc[:, 'color_factor'] = np.array([int('0b' + format(int(el) - 1, '#09b')[2] +
format(int(el) - 1, '#09b')[4], 2)
if el > 0 else 0 for el in trimmed_traces.loc[:, 'color_factor']])
# load the sync data
sync_data = pd.read_csv(sync_path, names=['Time', 'projector_frames', 'camera_frames',
'sync_trigger', 'mini_frames', 'wheel_frames', 'projector_frames_2'],
index_col=False)
# get the camera frames (as the indexes from sync_frames are referenced for the uncut sync_data, see match_dlc)
frame_times_cam_sync = sync_data.loc[kinematics_data['sync_frames'].to_numpy(), 'Time'].to_numpy()
# get the start and end triggers
sync_start = np.argwhere(sync_data.loc[:, 'sync_trigger'].to_numpy() == 1)[0][0] - 1
sync_end = np.argwhere(sync_data.loc[:, 'sync_trigger'].to_numpy() == 2)[0][0]
# trim the sync data to the experiment
sync_data = sync_data.iloc[sync_start:sync_end, :].reset_index(drop=True)
# get the motive frame times
# TODO: probs remove this later, since all trials should be on the new rig with the 2bit frame encoding
if np.any(np.isnan(sync_data['projector_frames_2'])):
# get the frame indexes
idx_code = np.argwhere(np.abs(np.diff(np.round(sync_data.loc[:, 'projector_frames'] / 4))) > 0).squeeze() + 1
# get the frame times
frame_times_motive_sync = sync_data.loc[idx_code, 'Time'].to_numpy()
# if the number of frames doesn't match, trim from the end
if trimmed_traces.shape[0] > frame_times_motive_sync.shape[0]:
trimmed_traces = trimmed_traces.iloc[-frame_times_motive_sync.shape[0]:, :]
elif trimmed_traces.shape[0] < frame_times_motive_sync.shape[0]:
frame_times_motive_sync = frame_times_motive_sync[-trimmed_traces.shape[0]:]
else:
# binarize both frame streams
frames_0 = np.round(sync_data.loc[:, 'projector_frames'] / 4).astype(int) * 2
frames_1 = np.round(sync_data.loc[:, 'projector_frames_2'] / 4).astype(int)
# assemble the actual sequence
frame_code = (frames_0 | frames_1).to_numpy()
# TODO: turn this into a function
fixed_code = frame_code.copy()
# for all the frames
for idx, frame in enumerate(frame_code[1:-1]):
idx += 1
# if it's the same number as before, skip
if frame == fixed_code[idx - 1]:
continue
# if the numbers before and after are equal
if fixed_code[idx - 1] == frame_code[idx + 1]:
# replace this position by the repeated number cause it's likely a mistake
fixed_code[idx] = frame_code[idx - 1]
continue
# if not, start filtering
# first check for 0-2, cause 3 is a special case
if fixed_code[idx - 1] in [0, 1, 2]:
if frame != fixed_code[idx - 1] + 1:
fixed_code[idx] = fixed_code[idx - 1] + 1
continue
else:
if frame != 0:
fixed_code[idx] = 0
continue
# get the motive-based frame code in sync
idx_code = np.argwhere(np.abs(np.diff(fixed_code)) > 0).squeeze() + 1
motive_code = fixed_code[idx_code]
# if the frame numbers don't match, find the first motive color number and match that
last_number = trimmed_traces.loc[trimmed_traces.shape[0] - 1, 'color_factor']
# trim the idx based on the last appearance of the last_number in motive_code
trim_idx = np.argwhere(motive_code == last_number)[-1][0] + 1
idx_code = idx_code[-(trimmed_traces.shape[0] + 1):trim_idx]
# if idx_code.shape[0] < trimmed_traces.shape[0]:
#
# # get the difference in frames
# delta_frames = trimmed_traces.shape[0] - idx_code.shape[0]
# # get trimmed traces trimmed
# idx_code = idx_code[delta_frames:]
# display_code = fixed_code[idx_code]
# get the frame times
frame_times_motive_sync = sync_data.loc[idx_code, 'Time'].to_numpy()
# trim the motive frames to be contained within the camera frames
if frame_times_motive_sync[0] < frame_times_cam_sync[0]:
start_idx = np.argwhere(frame_times_motive_sync > frame_times_cam_sync[0])[0][0]
frame_times_motive_sync = frame_times_motive_sync[start_idx:]
idx_code = idx_code[start_idx:]
trimmed_traces = trimmed_traces.iloc[start_idx:, :].reset_index(drop=True)
if frame_times_motive_sync[-1] > frame_times_cam_sync[-1]:
end_idx = np.argwhere(frame_times_motive_sync < frame_times_cam_sync[-1])[-1][0] + 1
frame_times_motive_sync = frame_times_motive_sync[:end_idx]
idx_code = idx_code[:end_idx]
trimmed_traces = trimmed_traces.iloc[:end_idx, :].reset_index(drop=True)
if trimmed_traces.shape[0] > frame_times_motive_sync.shape[0]:
delta_frames = trimmed_traces.shape[0] - frame_times_motive_sync.shape[0]
trimmed_traces = trimmed_traces.iloc[delta_frames:, :].reset_index(drop=True)
# interpolate the camera traces to match the unity frames
matched_camera = kinematics_data.drop(['time_vector', 'mouse', 'datetime', 'sync_frames'],
axis=1).apply(interp_trace, raw=False, args=(frame_times_cam_sync,
frame_times_motive_sync))
# fig = plt.figure()
# ax = fig.add_subplot(211)
# # ax.scatter(sync_data.loc[:, 'Time'], sync_data.loc[:, 'projector_frames'])
# ax.scatter(sync_data.loc[:, 'Time'], sync_data.loc[:, 'camera_frames'])
# ax.scatter(sync_data.loc[:, 'Time'], np.round(sync_data.loc[:, 'projector_frames']/4)*4)
# ax.scatter(frame_times_motive_sync, np.ones_like(frame_times_motive_sync))
#
# fig2 = plt.figure()
# ax = fig2.add_subplot(211)
# # ax.plot(np.diff(motive_traces.loc[:, 'time_m']))
# ax.plot(frame_times_motive_sync[1:], np.diff(frame_times_motive_sync))
#
# fig3 = plt.figure()
# ax = fig3.add_subplot(211)
# ax.plot(sync_data.loc[1:, 'Time'], np.diff(frame_code))
# ax.plot(sync_data.loc[1:, 'Time'], np.diff(fixed_code))
#
# fig4 = plt.figure()
# ax = fig4.add_subplot(211)
# # ax.plot(sync_data.loc[:, 'Time'], sync_data.loc[:, 'projector_frames'])
# ax.plot(sync_data.loc[:, 'Time'], sync_data.loc[:, 'sync_trigger'])
# ax.scatter(frame_times_motive_sync, np.ones_like(frame_times_motive_sync))
#
#
# fig5 = plt.figure()
# ax = fig5.add_subplot(211)
# ax.plot(trimmed_traces.loc[:, 'time_m'], trimmed_traces.loc[:, 'trial_num'])
# ax.plot(trimmed_traces.loc[:, 'time_m'], trimmed_traces.loc[:, 'sync_trigger'])
#
# fig6 = plt.figure()
# ax = fig6.add_subplot(111)
# ax.plot(np.diff(motive_code), marker='o')
# add the correct time vector from the interpolated traces
matched_camera['time_vector'] = frame_times_motive_sync
matched_camera['mouse'] = kinematics_data.loc[kinematics_data.index[0], 'mouse']
matched_camera['datetime'] = kinematics_data.loc[kinematics_data.index[0], 'datetime']
# correct the frame indexes to work with the untrimmed sync file
idx_code += sync_start
matched_camera['sync_frames'] = idx_code
# concatenate both data frames
full_dataframe = pd.concat([matched_camera, trimmed_traces.drop(['time_m', 'color_factor'], axis=1)], axis=1)
# reset the time vector
old_time = full_dataframe['time_vector']
full_dataframe['time_vector'] = np.array([el - old_time[0] for el in old_time])
return full_dataframe
def match_calcium_2(calcium_path, sync_path, kinematics_data, trials=None):
# load the calcium data (cells x time), transpose to get time x cells
with h5py.File(calcium_path, mode='r') as f:
calcium_data = np.array(f['calcium_data']).T
# if there are no ROIs, skip
if (type(calcium_data) == np.ndarray) and (calcium_data == 'no_ROIs'):
return None, None
roi_info = np.array(f['roi_info'])
# check if there are nans in the columns, if so, also skip
if kinematics_data.columns[0] == 'badFile':
print(f'File {os.path.basename(calcium_path)} not matched due to NaNs')
return None, None
# load the sync data
sync_data = pd.read_csv(sync_path, header=None)
if sync_data.shape[1] == 3:
sync_data.columns = ['Time', 'mini_frames', 'camera_frames']
elif sync_data.shape[1] == 6:
# TODO: only for files from 21.02.2022
sync_data.columns = ['Time', 'projector_frames', 'camera_frames',
'sync_trigger', 'mini_frames', 'wheel_frames']
else:
sync_data.columns = ['Time', 'projector_frames', 'camera_frames',
'sync_trigger', 'mini_frames', 'wheel_frames', 'projector_frames_2']
# get the camera frame times
frame_idx_camera_sync = kinematics_data['sync_frames'].to_numpy().astype(int)
frame_times_camera_sync = sync_data.loc[frame_idx_camera_sync, 'Time'].to_numpy()
# get the miniscope frame indexes from the sync file
frame_idx_mini_sync = np.argwhere(np.diff(np.round(sync_data.loc[:, 'mini_frames'])) > 0).squeeze() + 1
# interpolate missing triggers (based on experience)
frame_idx_mini_sync = np.round(interpolate_frame_triggers(frame_idx_mini_sync))
# correct for the calcium starting before and/or ending after the behavior
if frame_idx_mini_sync[0] < frame_idx_camera_sync[0]:
start_idx = np.argwhere(frame_idx_mini_sync > frame_idx_camera_sync[0])[0][0]
frame_idx_mini_sync = frame_idx_mini_sync[start_idx:]
calcium_data = calcium_data[start_idx:, :]
if frame_idx_mini_sync[-1] > frame_idx_camera_sync[-1]:
end_idx = np.argwhere(frame_idx_mini_sync < frame_idx_camera_sync[-1])[-1][0] + 1
frame_idx_mini_sync = frame_idx_mini_sync[:end_idx]
calcium_data = calcium_data[:end_idx, :]
# get the delta frames with the calcium
delta_frames = frame_idx_mini_sync.shape[0] - calcium_data.shape[0]
# remove extra detections coming from terminating the calcium mid frame (I think)
if delta_frames > 0:
print(f'There were {delta_frames} triggers more than frames on file {os.path.basename(calcium_path)}')
frame_idx_mini_sync = frame_idx_mini_sync[:-delta_frames]
elif delta_frames < 0:
print(f'There were {-delta_frames} more frames than triggers on file {os.path.basename(calcium_path)}')
calcium_data = calcium_data[:delta_frames, :]
# trim calcium according to the frames left within the behavior
calcium_data = calcium_data[frame_idx_mini_sync > frame_idx_camera_sync[0], :]
# and then remove frames before the behavior starts
frame_idx_mini_sync = frame_idx_mini_sync[frame_idx_mini_sync > frame_idx_camera_sync[0]]
# get the actual mini times
frame_times_mini_sync = sync_data.loc[frame_idx_mini_sync, 'Time'].to_numpy()
# interpolate the bonsai traces to match the mini frames
matched_bonsai = kinematics_data.drop(['time_vector', 'sync_frames', 'mouse', 'datetime'],
axis=1).apply(interp_trace, raw=False, args=(frame_times_camera_sync,
frame_times_mini_sync))
if trials is not None:
# repair the trial_num column
matched_bonsai.loc[:, 'trial_num'] = np.round(matched_bonsai.loc[:, 'trial_num'])
# now that the trials are reassigned, add the trial data
matched_bonsai = assign_trial_parameters(matched_bonsai, trials)
else:
# round the quadrant vector as it should be discrete
quadrant_columns = [el for el in matched_bonsai.columns if ('_quadrant' in el)]
for el in quadrant_columns:
matched_bonsai[el] = np.round(matched_bonsai[el])
# same for the hunt trace
if 'hunt_trace' in matched_bonsai.columns:
matched_bonsai.loc[:, 'hunt_trace'] = np.round(matched_bonsai.loc[:, 'hunt_trace'])
# add the correct time vector from the interpolated traces, plus mouse and datetime
matched_bonsai['time_vector'] = frame_times_mini_sync
matched_bonsai['mouse'] = kinematics_data.loc[0, 'mouse']
matched_bonsai['datetime'] = kinematics_data.loc[0, 'datetime']
# print a single dataframe with the calcium matched positions and timestamps
cell_column_names = ['_'.join(('cell', f'{el:04d}')) for el in range(calcium_data.shape[1])]
calcium_dataframe = pd.DataFrame(calcium_data, columns=cell_column_names)
# concatenate both data frames
full_dataframe = pd.concat([matched_bonsai, calcium_dataframe], axis=1)
# reset the time vector
old_time = full_dataframe['time_vector']
full_dataframe.loc[:, 'time_vector'] = np.array([el - old_time[0] for el in old_time])
# turn the roi info into a dataframe
roi_info = pd.DataFrame(roi_info, columns=['centroid_x', 'centroid_y',
'bbox_left', 'bbox_top', 'bbox_width', 'bbox_height', 'area'])
return full_dataframe, roi_info
def match_wheel(file_info, filtered_traces, wheel_diameter=16):
"""Get the wheel speed and acceleration on each frame"""
# load the sync data
sync_data = pd.read_csv(file_info['sync_path'], names=['Time', 'projector_frames', 'camera_frames',
'sync_trigger', 'mini_frames', 'wheel_frames'],
index_col=False)
# get the wheel trace
wheel_position = sync_data.loc[filtered_traces['sync_frames'], ['wheel_frames']]
# convert the position to radians
wheel_position = (wheel_position - wheel_position.min()) / (wheel_position.max() - wheel_position.min()) * 2 * np.pi
# unwrap
wheel_position = np.unwrap(wheel_position).flatten()
# get the speed of the wheel
wheel_speed = np.diff(wheel_position * np.pi * (wheel_diameter - 1) / 360)
# get the wheel acceleration
wheel_acceleration = np.diff(wheel_speed)
# prepend zeros to speed and acceleration arrays
wheel_speed = np.insert(wheel_speed, 0, 0, axis=0)
wheel_acceleration = np.insert(wheel_acceleration, [0, 0], 0, axis=0)
# save in the output frame
filtered_traces['wheel_speed'] = wheel_speed
filtered_traces['wheel_acceleration'] = wheel_acceleration
return filtered_traces
def match_eye(filtered_traces, eye_model='sakatani+isa'):
"""Extract and process the eye tracking data"""
filtered_traces.reset_index(drop=True, inplace=True)
# --- Blink detection --- #
# create vectors between the eye nasal eye corner and eyelid top and bottom
eyelid_top_vec = filtered_traces.loc[:, ['eyelid_top_x', 'eyelid_top_y']].to_numpy() - \
filtered_traces.loc[:, ['eye_corner_nasal_x', 'eye_corner_nasal_y']].to_numpy()
eyelid_bottom_vec = filtered_traces.loc[:, ['eyelid_bottom_x', 'eyelid_bottom_y']].to_numpy() - \
filtered_traces.loc[:, ['eye_corner_nasal_x', 'eye_corner_nasal_y']].to_numpy()
eyelid_top_vec_u = eyelid_top_vec / np.linalg.norm(eyelid_top_vec, axis=1)[:, np.newaxis]
eyelid_bottom_vec_u = eyelid_bottom_vec / np.linalg.norm(eyelid_bottom_vec, axis=1)[:, np.newaxis]
eyelid_angle = np.rad2deg(np.arccos(np.sum(eyelid_top_vec_u * eyelid_bottom_vec_u, axis=1)))
filtered_traces.insert(loc=0, column='eyelid_angle', value=eyelid_angle)
# --- Pupil tracking --- #
pupil_columns = ['pupil_top', 'pupil_top_right', 'pupil_top_left',
'pupil_bottom', 'pupil_bottom_right', 'pupil_bottom_left',
'pupil_right', 'pupil_left']
# Need to extract in y, x order because OpenCV defaults to row, column format
pupil_points_yx = [np.column_stack(filtered_traces.loc[:, [point + '_y', point + '_x']].to_numpy().T) for point in
pupil_columns]
# Gets the array so rows (first dimension) are points for each frame
pupil_points_yx = np.array(pupil_points_yx).transpose((1, 0, 2))
# Fit ellipse to pupil points - conversion to float needed for cv2
ellipses = [cv2.fitEllipse(pupil_points_yx[row, :].astype(np.float32)) for
row in np.arange(pupil_points_yx.shape[0])]
# calculate diameter and center - take major axis to be pupil diameter
# note the reversing of the first fit output because of reversed cv2 convention
fit_columns = ['fit_pupil_center_x', 'fit_pupil_center_y', 'pupil_diameter', 'minor_axis', 'pupil_rotation']
pupil_fit = pd.DataFrame([[*reversed(fit[0]), *fit[1], fit[-1]] for fit in ellipses], columns=fit_columns)
filtered_traces = pd.concat([pupil_fit, filtered_traces], axis=1)
# --- Gaze angle --- #
# Get horizontal eye axis
eye_horizontal_vector = filtered_traces.loc[:, ['eye_corner_nasal_x', 'eye_corner_nasal_y']].to_numpy() - \
filtered_traces.loc[:, ['eye_corner_temporal_x', 'eye_corner_temporal_y']].to_numpy()
# horizontal midpoint becomes origin of eye coordinate system
eye_axis_midpoint = filtered_traces.loc[:,
['eye_corner_temporal_x', 'eye_corner_temporal_y']].to_numpy() + eye_horizontal_vector / 2
# compute pupil position relative to origin of eye coordinate system
pupiL_coord_ref = filtered_traces.loc[:, ['fit_pupil_center_x', 'fit_pupil_center_y']].to_numpy() - \
eye_axis_midpoint
center_ref_cols = ['eye_horizontal_vector_x', 'eye_horizontal_vector_y', 'eye_midpoint_x', 'eye_midpoint_y',
'pupil_center_ref_x', 'pupil_center_ref_y']
center_ref_pupil = pd.DataFrame(np.column_stack((eye_horizontal_vector, eye_axis_midpoint, pupiL_coord_ref)),
columns=center_ref_cols)
filtered_traces = pd.concat([center_ref_pupil, filtered_traces], axis=1)
# TODO actually calculate gaze angle if needed
return filtered_traces
def match_dlc(filtered_traces, file_info, file_date):
"""Match the DLC traces with the sync time"""
# choose the timestamp mode depending on the date
# (this is here mostly just in case, should be able to handle files before the sync file)
if file_date <= datetime.datetime(year=2019, month=11, day=11, hour=20):
# parse the bonsai file for the time stamps
timestamp = []
with open(file_info['bonsai_path']) as f:
for ex_line in f:
ex_list = ex_line.split(' ')
ex_list.remove('\n')
timestamp.append(ex_list.pop())
# add the time stamps to the main dataframe
time = np.array([datetime.datetime.strptime(el[:-7], '%Y-%m-%dT%H:%M:%S.%f') for el in timestamp])
time = np.array([el.total_seconds() for el in (time - time[0])])
cam_idx = np.ones_like(time) * np.nan
elif (file_date <= datetime.datetime(year=2021, month=12, day=14)) & \
(file_date > datetime.datetime(year=2019, month=11, day=10)):
# load the sync file
sync_data = pd.read_csv(file_info['sync_path'], names=['Time', 'mini_frames', 'camera_frames'], index_col=False)
# get the camera triggers
cam_idx = np.argwhere(np.diff(sync_data.loc[:, 'camera_frames']) > 0).squeeze() + 1