-
Notifications
You must be signed in to change notification settings - Fork 7
/
pi_calculus.txt
92 lines (75 loc) · 3.78 KB
/
pi_calculus.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# π-calculus. Useful information from Greg Meredith
Erik Anderson, Bloomberg https://www.linkedin.com/in/erikanderson
Github links
SpecialK - distributed, decentralized implementation of the applied π-calculus
https://github.com/synereo/special-k
Individual Agent - User Model on top of SpecialK
https://github.com/synereo/agent-service-ati-ia
GLoSEval - http bridge
https://github.com/synereo/gloseval
agentui - social network ui
https://github.com/synereo/agentui
Bibliography
SpecialK as Decentralized Design Pattern
http://blog.synereo.com/2015/03/17/specialk-kvdb/
Applied π-calculus as social contracts
http://blog.synereo.com/2015/03/06/social-contracts-pt-ii/
Polyadic π-calculus tutorial
http://www.lfcs.inf.ed.ac.uk/reports/91/ECS-LFCS-91-180/
Reflective higher-order calculus
http://dl.acm.org/citation.cfm?id=1705674
https://www.researchgate.net/publication/220368672_A_Reflective_Higher-order_Calculus
Namespace logic
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.95.9601
Higher category semantics of the π-calculus
http://arxiv.org/abs/1504.04311
Applied π-calculus
http://web.cs.wpi.edu/~guttman/cs559_website/chapter-6.pdf
Behavioral and spatial observations in a logic for the π-calculus
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.3.9964&rep=rep1&type=ps
Formal verification and simulation tools
Spatial logic model checker (model checker for Concurrency, Distribution and Mobility)
http://ctp.di.fct.unl.pt/SLMC/
A secret is a piece of data whose knowledge of is restricted to some parts of a system, and unforgeable by other parts.
Proverif (Cryptographic protocol verifier in the formal model)
http://prosecco.gforge.inria.fr/personal/bblanche/proverif/
Spim (Stochastic Pi Machine (SPiM) is a programming language for designing and simulating computer models of biological processes)
http://research.microsoft.com/en-us/projects/spim/
Spim's abstract machine
http://research.microsoft.com/pubs/65228/Bioconcur04.pdf
Videos
Interaction and introspection
https://www.youtube.com/playlist?list=PLtZ52LzwL9Lmop8WEOhM2mcT4gKgGZPNc
π-calculus for fun and profit
part 1 - https://www.youtube.com/watch?v=nXYGPYnCokE
part 2 - https://www.youtube.com/watch?v=5lfvRJkcOhQ
part 3 - https://www.youtube.com/watch?v=uMYM0Nnohnk
Synereo
https://www.livecoding.tv/synereo/
https://www.youtube.com/watch?v=B0ZmT3f4bwI&feature=youtu.be
Casper architecture notes
Casper in a reflective calculus
https://drive.google.com/file/d/0B5I9qM5f_1cfSVMwd25lWUpKN3c/view?ths=true&pref=2&pli=1
*******************************************
rho-calculus is a formalism intended to combine the higher-order facilities of lambda calculus with the pattern matching of term rewriting
*******************************************
Here's the blog entry write up that http://blog.synereo.com/2015/03/06/social-contracts-pt-ii/
explains this working code https://github.com/rlamb/Agent-Service-ATI-IA/tree/cryptoRedo/AgentServices-Store/src/main/scala/com/protegra_ati/agentservices/protocols/verification
One secret decoder ring trick is to understand that when we write
x?( y )P in π-calculus
the monadic refactor is
for( y <- x ){ P }
This refactoring allows us to freely mix join
x?( y ) & u?( v ).P
which becomes
for( y <- x; v <- u ){ P }
and choice
x?( y )P + u?( v )Q
which translates to the similar syntax
for( y <- x; v <- u ) {
( y, v ) match {
case ( Some( ny ), _ ) => P;
case ( _, Some( nu ) ) => Q
}
}
but uses a different monad (https://en.wikipedia.org/wiki/Monad_(functional_programming).