-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
216 lines (166 loc) · 7.81 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
BASE_DIR = './k-Segments-traces'
import matplotlib.pyplot as plt
import seaborn as sns
import os
import math
import pandas as pd
from tsb_resource_allocation.witt_task_model import WittTaskModel
from tsb_resource_allocation.tovar_task_model import TovarTaskModel
from tsb_resource_allocation.simulation import Simulation
from tsb_resource_allocation.k_segments_model import KSegmentsModel
from tsb_resource_allocation.file_events_model import FileEventsModel
from tsb_resource_allocation.default_model import DefaultModel
sns.set_theme(style="darkgrid")
# Helper methods
def get_file_names(directory, number_of_files=-1):
file_names = [name.rsplit('_', 1)[0] for name in os.listdir(directory) if
not os.path.isdir(f"{directory}{name}") and name.endswith("_memory.csv")]
if number_of_files != -1:
return file_names[:number_of_files]
return file_names
def run_simulation(directory, training, test, monotonically_increasing=True, k=4, collection_interval=2):
# MODELS
simulations = []
# KSegments retry: selective
task_model = KSegmentsModel(k=k, monotonically_increasing=monotonically_increasing)
simulation = Simulation(task_model, directory, retry_mode='selective', provided_file_names=training)
simulations.append(simulation)
# KSegments retry: selective - NO UNDERPREDICTION
task_model = KSegmentsModel(k=k, monotonically_increasing=monotonically_increasing, time_mode=-1)
simulation = Simulation(task_model, directory, retry_mode='selective', provided_file_names=training)
# simulations.append(simulation)
# KSegments retry: partial
task_model = KSegmentsModel(k=k, monotonically_increasing=monotonically_increasing)
simulation = Simulation(task_model, directory, retry_mode='partial', provided_file_names=training)
simulations.append(simulation)
# WITT LR MEAN+- TASK MODEL
task_model = WittTaskModel(mode="mean+-")
simulation = Simulation(task_model, directory, retry_mode='full', provided_file_names=training)
simulations.append(simulation)
# TOVAR TASK MODEL - full retry
task_model = TovarTaskModel()
simulation = Simulation(task_model, directory, retry_mode='full', provided_file_names=training)
simulations.append(simulation)
# TOVAR TASK MODEL - tovar retry
task_model = TovarTaskModel()
simulation = Simulation(task_model, directory, retry_mode='tovar', provided_file_names=training)
simulations.append(simulation)
# Default Model
task_model = DefaultModel()
simulation = Simulation(task_model, directory, retry_mode='full', provided_file_names=training)
simulations.append(simulation)
waste, retries, runtimes = [0 for _ in range(len(simulations))], [0 for _ in range(len(simulations))], [0 for _ in
range(
len(simulations))]
for file_name in test:
for i, s in enumerate(simulations):
result = s.execute(file_name, True)
waste[i] += (result[0] )
retries[i] += result[1]
runtimes[i] += (result[2] * collection_interval)
avg_waste = list(map(lambda w: w, waste))
avg_retries = list(map(lambda r: r, retries))
avg_runtime = list(map(lambda r: r, runtimes))
return avg_waste, avg_retries, avg_runtime
import random
# OUTPUT = ( [Waste: [Witt: 25, Tovar: 25, k-segments:25], [50] , [75]], [Retries], [Runtime])
def split(train_percent, instances, seed=18181):
r = random.Random(seed)
trainidx = set()
while len(trainidx) < int(train_percent * len(instances)):
trainidx.add(int(len(instances) * r.random()))
train = [instances[i] for i in sorted(trainidx)]
data = [instances[i] for i in range(len(instances)) if i not in trainidx]
return (train, data)
def benchmark_task(task_dir='/eager/markduplicates', base_directory=BASE_DIR, seed=0):
directory = f'{base_directory}/{task_dir}'
file_names_orig = []
file_order = get_file_order(directory)
if file_order != None:
file_names_orig = file_order
else:
file_names_orig = get_file_names(directory)
percentages = [0.25, 0.5, 0.75]
x = []
y_waste = []
y_retries = []
y_runtime = []
filter_file_names = list(
filter(lambda x: len(pd.read_csv(f'{directory}/{x}_memory.csv', skiprows=3)) >= 60, file_names_orig))
if len(filter_file_names) < 16:
return -1
filter_file_names = list(
filter(lambda x: len(pd.read_csv(f'{directory}/{x}_memory.csv', skiprows=3)) >= 4, file_names_orig))
file_names = sorted(filter_file_names)
print(f'Usable Data: {len(file_names)}/{len(file_names_orig)}')
for p in percentages:
# training = file_names[:i]
# test = file_names[i:] # file_names[i:] - other mode
training, test = split(p, file_names, seed)
# TODO p
print(f"training: {len(training)}, test: {len(test)}", end="\r", flush=True)
avg_waste, avg_retries, avg_runtime = run_simulation(directory, training, test, k=4)
# x.append(i)
y_waste.append(list(map(lambda w: round(w, 2), avg_waste)))
y_retries.append(avg_retries)
y_runtime.append(avg_runtime)
return (y_waste, y_retries, y_runtime)
def record_file_order(workflow_tasks, base_directory, depth):
if depth > 1:
return
f = open(f"{base_directory}/file_order.txt", "w")
for task in workflow_tasks:
basename = os.path.basename(task)
f.write(f"{basename}\n")
if depth > 0:
continue
record_file_order(get_file_names(task), f'{base_directory}/{basename}', depth + 1)
def get_file_order(base_directory):
try:
with open(f'{base_directory}/file_order.txt') as f:
return f.read().splitlines()
except:
return None
import csv
workflow = "eager"
seed = 0
base_directory = f'{BASE_DIR}/{workflow}'
workflow_tasks = []
file_order = get_file_order(base_directory)
file_order = None
if file_order != None:
workflow_tasks = file_order
else:
workflow_tasks = [os.path.join(base_directory, item) for item in os.listdir(base_directory) if
os.path.isdir(os.path.join(base_directory, item))]
workflow_tasks = [task for task in workflow_tasks if len(os.listdir(task)) > 15]
workflow_tasks = list(map(os.path.basename, workflow_tasks))
categories = ["Wastage", "Retries", "Runtime"]
percentages = ["25%", "50%", "75%"]
methods = ["k-Segments Selective", "k-Segments Partial",
"Witt", "Tovar-Improved","Tovar", "Default"]
def write_results_csv(resultfile: str, method: str, task: str, setup: str, wastage, retries, runtime):
if not (os.path.exists(resultfile)):
with open(resultfile, 'a', newline='\n') as csvfile:
writer = csv.writer(csvfile, delimiter=',')
writer.writerow(
["Method", "Task", "Setup", "Wastage", "Retries", "Runtime"])
with open(resultfile, 'a', newline='\n') as csvfile:
writer = csv.writer(csvfile, delimiter=',')
writer.writerow(
[method, task, setup, wastage, retries, runtime])
# 0 = WASTE, 1 = RETRIES, 2 = RUNTIME
for task in workflow_tasks:
print("Analyze Task: " + task)
r = benchmark_task(task, base_directory, seed)
if r == -1:
continue
task_name = os.path.basename(task)
m = ', '.join(map(str, r[0][2]))
print(f'{task_name}')
for i, category in enumerate(categories):
for j, percentage in enumerate(percentages):
print(f'{category} {percentage}: {r[i][j]}')
for i, method in enumerate(methods):
for j, percentage in enumerate(percentages):
write_results_csv(f"./results/{workflow}.csv", method, task, percentage, r[0][j][i], r[1][j][i], r[2][j][i])