comments | difficulty | edit_url | rating | source | tags | ||
---|---|---|---|---|---|---|---|
true |
Easy |
1420 |
Weekly Contest 352 Q1 |
|
You are given a 0-indexed integer array nums
and an integer threshold
.
Find the length of the longest subarray of nums
starting at index l
and ending at index r
(0 <= l <= r < nums.length)
that satisfies the following conditions:
nums[l] % 2 == 0
- For all indices
i
in the range[l, r - 1]
,nums[i] % 2 != nums[i + 1] % 2
- For all indices
i
in the range[l, r]
,nums[i] <= threshold
Return an integer denoting the length of the longest such subarray.
Note: A subarray is a contiguous non-empty sequence of elements within an array.
Example 1:
Input: nums = [3,2,5,4], threshold = 5 Output: 3 Explanation: In this example, we can select the subarray that starts at l = 1 and ends at r = 3 => [2,5,4]. This subarray satisfies the conditions. Hence, the answer is the length of the subarray, 3. We can show that 3 is the maximum possible achievable length.
Example 2:
Input: nums = [1,2], threshold = 2 Output: 1 Explanation: In this example, we can select the subarray that starts at l = 1 and ends at r = 1 => [2]. It satisfies all the conditions and we can show that 1 is the maximum possible achievable length.
Example 3:
Input: nums = [2,3,4,5], threshold = 4 Output: 3 Explanation: In this example, we can select the subarray that starts at l = 0 and ends at r = 2 => [2,3,4]. It satisfies all the conditions. Hence, the answer is the length of the subarray, 3. We can show that 3 is the maximum possible achievable length.
Constraints:
1 <= nums.length <= 100
1 <= nums[i] <= 100
1 <= threshold <= 100
We enumerate all
The time complexity is
class Solution:
def longestAlternatingSubarray(self, nums: List[int], threshold: int) -> int:
ans, n = 0, len(nums)
for l in range(n):
if nums[l] % 2 == 0 and nums[l] <= threshold:
r = l + 1
while r < n and nums[r] % 2 != nums[r - 1] % 2 and nums[r] <= threshold:
r += 1
ans = max(ans, r - l)
return ans
class Solution {
public int longestAlternatingSubarray(int[] nums, int threshold) {
int ans = 0, n = nums.length;
for (int l = 0; l < n; ++l) {
if (nums[l] % 2 == 0 && nums[l] <= threshold) {
int r = l + 1;
while (r < n && nums[r] % 2 != nums[r - 1] % 2 && nums[r] <= threshold) {
++r;
}
ans = Math.max(ans, r - l);
}
}
return ans;
}
}
class Solution {
public:
int longestAlternatingSubarray(vector<int>& nums, int threshold) {
int ans = 0, n = nums.size();
for (int l = 0; l < n; ++l) {
if (nums[l] % 2 == 0 && nums[l] <= threshold) {
int r = l + 1;
while (r < n && nums[r] % 2 != nums[r - 1] % 2 && nums[r] <= threshold) {
++r;
}
ans = max(ans, r - l);
}
}
return ans;
}
};
func longestAlternatingSubarray(nums []int, threshold int) (ans int) {
n := len(nums)
for l := range nums {
if nums[l]%2 == 0 && nums[l] <= threshold {
r := l + 1
for r < n && nums[r]%2 != nums[r-1]%2 && nums[r] <= threshold {
r++
}
ans = max(ans, r-l)
}
}
return
}
function longestAlternatingSubarray(nums: number[], threshold: number): number {
const n = nums.length;
let ans = 0;
for (let l = 0; l < n; ++l) {
if (nums[l] % 2 === 0 && nums[l] <= threshold) {
let r = l + 1;
while (r < n && nums[r] % 2 !== nums[r - 1] % 2 && nums[r] <= threshold) {
++r;
}
ans = Math.max(ans, r - l);
}
}
return ans;
}
We notice that the problem actually divides the array into several disjoint subarrays that meet the condition. We only need to find the longest one among these subarrays. Therefore, when enumerating
The time complexity is
class Solution:
def longestAlternatingSubarray(self, nums: List[int], threshold: int) -> int:
ans, l, n = 0, 0, len(nums)
while l < n:
if nums[l] % 2 == 0 and nums[l] <= threshold:
r = l + 1
while r < n and nums[r] % 2 != nums[r - 1] % 2 and nums[r] <= threshold:
r += 1
ans = max(ans, r - l)
l = r
else:
l += 1
return ans
class Solution {
public int longestAlternatingSubarray(int[] nums, int threshold) {
int ans = 0;
for (int l = 0, n = nums.length; l < n;) {
if (nums[l] % 2 == 0 && nums[l] <= threshold) {
int r = l + 1;
while (r < n && nums[r] % 2 != nums[r - 1] % 2 && nums[r] <= threshold) {
++r;
}
ans = Math.max(ans, r - l);
l = r;
} else {
++l;
}
}
return ans;
}
}
class Solution {
public:
int longestAlternatingSubarray(vector<int>& nums, int threshold) {
int ans = 0;
for (int l = 0, n = nums.size(); l < n;) {
if (nums[l] % 2 == 0 && nums[l] <= threshold) {
int r = l + 1;
while (r < n && nums[r] % 2 != nums[r - 1] % 2 && nums[r] <= threshold) {
++r;
}
ans = max(ans, r - l);
l = r;
} else {
++l;
}
}
return ans;
}
};
func longestAlternatingSubarray(nums []int, threshold int) (ans int) {
for l, n := 0, len(nums); l < n; {
if nums[l]%2 == 0 && nums[l] <= threshold {
r := l + 1
for r < n && nums[r]%2 != nums[r-1]%2 && nums[r] <= threshold {
r++
}
ans = max(ans, r-l)
l = r
} else {
l++
}
}
return
}
function longestAlternatingSubarray(nums: number[], threshold: number): number {
const n = nums.length;
let ans = 0;
for (let l = 0; l < n; ) {
if (nums[l] % 2 === 0 && nums[l] <= threshold) {
let r = l + 1;
while (r < n && nums[r] % 2 !== nums[r - 1] % 2 && nums[r] <= threshold) {
++r;
}
ans = Math.max(ans, r - l);
l = r;
} else {
++l;
}
}
return ans;
}