comments | difficulty | edit_url | rating | source | tags | |||
---|---|---|---|---|---|---|---|---|
true |
Medium |
1454 |
Biweekly Contest 51 Q3 |
|
You are given an array of positive integers arr
. Perform some operations (possibly none) on arr
so that it satisfies these conditions:
- The value of the first element in
arr
must be1
. - The absolute difference between any 2 adjacent elements must be less than or equal to
1
. In other words,abs(arr[i] - arr[i - 1]) <= 1
for eachi
where1 <= i < arr.length
(0-indexed).abs(x)
is the absolute value ofx
.
There are 2 types of operations that you can perform any number of times:
- Decrease the value of any element of
arr
to a smaller positive integer. - Rearrange the elements of
arr
to be in any order.
Return the maximum possible value of an element in arr
after performing the operations to satisfy the conditions.
Example 1:
Input: arr = [2,2,1,2,1] Output: 2 Explanation: We can satisfy the conditions by rearrangingarr
so it becomes[1,2,2,2,1]
. The largest element inarr
is 2.
Example 2:
Input: arr = [100,1,1000] Output: 3 Explanation: One possible way to satisfy the conditions is by doing the following: 1. Rearrangearr
so it becomes[1,100,1000]
. 2. Decrease the value of the second element to 2. 3. Decrease the value of the third element to 3. Nowarr = [1,2,3]
, whichsatisfies the conditions. The largest element in
arr is 3.
Example 3:
Input: arr = [1,2,3,4,5] Output: 5 Explanation: The array already satisfies the conditions, and the largest element is 5.
Constraints:
1 <= arr.length <= 105
1 <= arr[i] <= 109
First, we sort the array and then set the first element of the array to
Next, we start traversing the array from the second element. If the difference between the current element and the previous one is more than
Finally, we return the maximum element in the array.
The time complexity is
class Solution:
def maximumElementAfterDecrementingAndRearranging(self, arr: List[int]) -> int:
arr.sort()
arr[0] = 1
for i in range(1, len(arr)):
d = max(0, arr[i] - arr[i - 1] - 1)
arr[i] -= d
return max(arr)
class Solution {
public int maximumElementAfterDecrementingAndRearranging(int[] arr) {
Arrays.sort(arr);
arr[0] = 1;
int ans = 1;
for (int i = 1; i < arr.length; ++i) {
int d = Math.max(0, arr[i] - arr[i - 1] - 1);
arr[i] -= d;
ans = Math.max(ans, arr[i]);
}
return ans;
}
}
class Solution {
public:
int maximumElementAfterDecrementingAndRearranging(vector<int>& arr) {
sort(arr.begin(), arr.end());
arr[0] = 1;
int ans = 1;
for (int i = 1; i < arr.size(); ++i) {
int d = max(0, arr[i] - arr[i - 1] - 1);
arr[i] -= d;
ans = max(ans, arr[i]);
}
return ans;
}
};
func maximumElementAfterDecrementingAndRearranging(arr []int) int {
sort.Ints(arr)
ans := 1
arr[0] = 1
for i := 1; i < len(arr); i++ {
d := max(0, arr[i]-arr[i-1]-1)
arr[i] -= d
ans = max(ans, arr[i])
}
return ans
}
function maximumElementAfterDecrementingAndRearranging(arr: number[]): number {
arr.sort((a, b) => a - b);
arr[0] = 1;
let ans = 1;
for (let i = 1; i < arr.length; ++i) {
const d = Math.max(0, arr[i] - arr[i - 1] - 1);
arr[i] -= d;
ans = Math.max(ans, arr[i]);
}
return ans;
}
public class Solution {
public int MaximumElementAfterDecrementingAndRearranging(int[] arr) {
Array.Sort(arr);
int n = arr.Length;
arr[0] = 1;
for (int i = 1; i < n; ++i) {
arr[i] = Math.Min(arr[i], arr[i - 1] + 1);
}
return arr[n - 1];
}
}