Skip to content

Latest commit

 

History

History
229 lines (190 loc) · 6.83 KB

File metadata and controls

229 lines (190 loc) · 6.83 KB
comments difficulty edit_url rating source tags
true
中等
1380
第 50 场双周赛 Q2
几何
数组
数学

English Version

题目描述

给你一个数组 points ,其中 points[i] = [xi, yi] ,表示第 i 个点在二维平面上的坐标。多个点可能会有 相同 的坐标。

同时给你一个数组 queries ,其中 queries[j] = [xj, yj, rj] ,表示一个圆心在 (xj, yj) 且半径为 rj 的圆。

对于每一个查询 queries[j] ,计算在第 j 个圆  点的数目。如果一个点在圆的 边界上 ,我们同样认为它在圆  。

请你返回一个数组 answer ,其中 answer[j]是第 j 个查询的答案。

 

示例 1:

输入:points = [[1,3],[3,3],[5,3],[2,2]], queries = [[2,3,1],[4,3,1],[1,1,2]]
输出:[3,2,2]
解释:所有的点和圆如上图所示。
queries[0] 是绿色的圆,queries[1] 是红色的圆,queries[2] 是蓝色的圆。

示例 2:

输入:points = [[1,1],[2,2],[3,3],[4,4],[5,5]], queries = [[1,2,2],[2,2,2],[4,3,2],[4,3,3]]
输出:[2,3,2,4]
解释:所有的点和圆如上图所示。
queries[0] 是绿色的圆,queries[1] 是红色的圆,queries[2] 是蓝色的圆,queries[3] 是紫色的圆。

 

提示:

  • 1 <= points.length <= 500
  • points[i].length == 2
  • 0 <= x​​​​​​i, y​​​​​​i <= 500
  • 1 <= queries.length <= 500
  • queries[j].length == 3
  • 0 <= xj, yj <= 500
  • 1 <= rj <= 500
  • 所有的坐标都是整数。

解法

方法一:枚举

枚举所有的圆点 $(x, y, r)$,对于每个圆点,计算在圆内的点的个数,即可得到答案。

时间复杂度 $O(m \times n)$,其中 $m$$n$ 分别为数组 queries 的长度和 points 的长度。忽略答案的空间消耗,空间复杂度 $O(1)$

Python3

class Solution:
    def countPoints(
        self, points: List[List[int]], queries: List[List[int]]
    ) -> List[int]:
        ans = []
        for x, y, r in queries:
            cnt = 0
            for i, j in points:
                dx, dy = i - x, j - y
                cnt += dx * dx + dy * dy <= r * r
            ans.append(cnt)
        return ans

Java

class Solution {
    public int[] countPoints(int[][] points, int[][] queries) {
        int m = queries.length;
        int[] ans = new int[m];
        for (int k = 0; k < m; ++k) {
            int x = queries[k][0], y = queries[k][1], r = queries[k][2];
            for (var p : points) {
                int i = p[0], j = p[1];
                int dx = i - x, dy = j - y;
                if (dx * dx + dy * dy <= r * r) {
                    ++ans[k];
                }
            }
        }
        return ans;
    }
}

C++

class Solution {
public:
    vector<int> countPoints(vector<vector<int>>& points, vector<vector<int>>& queries) {
        vector<int> ans;
        for (auto& q : queries) {
            int x = q[0], y = q[1], r = q[2];
            int cnt = 0;
            for (auto& p : points) {
                int i = p[0], j = p[1];
                int dx = i - x, dy = j - y;
                cnt += dx * dx + dy * dy <= r * r;
            }
            ans.emplace_back(cnt);
        }
        return ans;
    }
};

Go

func countPoints(points [][]int, queries [][]int) (ans []int) {
	for _, q := range queries {
		x, y, r := q[0], q[1], q[2]
		cnt := 0
		for _, p := range points {
			i, j := p[0], p[1]
			dx, dy := i-x, j-y
			if dx*dx+dy*dy <= r*r {
				cnt++
			}
		}
		ans = append(ans, cnt)
	}
	return
}

TypeScript

function countPoints(points: number[][], queries: number[][]): number[] {
    return queries.map(([cx, cy, r]) => {
        let res = 0;
        for (const [px, py] of points) {
            if (Math.sqrt((cx - px) ** 2 + (cy - py) ** 2) <= r) {
                res++;
            }
        }
        return res;
    });
}

Rust

impl Solution {
    pub fn count_points(points: Vec<Vec<i32>>, queries: Vec<Vec<i32>>) -> Vec<i32> {
        queries
            .iter()
            .map(|v| {
                let cx = v[0];
                let cy = v[1];
                let r = v[2].pow(2);
                let mut count = 0;
                for p in points.iter() {
                    if (p[0] - cx).pow(2) + (p[1] - cy).pow(2) <= r {
                        count += 1;
                    }
                }
                count
            })
            .collect()
    }
}

C

/**
 * Note: The returned array must be malloced, assume caller calls free().
 */
int* countPoints(int** points, int pointsSize, int* pointsColSize, int** queries, int queriesSize, int* queriesColSize,
    int* returnSize) {
    int* ans = malloc(sizeof(int) * queriesSize);
    for (int i = 0; i < queriesSize; i++) {
        int cx = queries[i][0];
        int cy = queries[i][1];
        int r = queries[i][2];
        int count = 0;
        for (int j = 0; j < pointsSize; j++) {
            if (sqrt(pow(points[j][0] - cx, 2) + pow(points[j][1] - cy, 2)) <= r) {
                count++;
            }
        }
        ans[i] = count;
    }
    *returnSize = queriesSize;
    return ans;
}