Skip to content

Latest commit

 

History

History
270 lines (233 loc) · 6.99 KB

File metadata and controls

270 lines (233 loc) · 6.99 KB
comments difficulty edit_url rating source tags
true
困难
1945
第 232 场周赛 Q4
数组
双指针
二分查找
单调栈

English Version

题目描述

给你一个整数数组 nums (下标从 0 开始)和一个整数 k 。

一个子数组 (i, j) 的 分数 定义为 min(nums[i], nums[i+1], ..., nums[j]) * (j - i + 1) 。一个  子数组的两个端点下标需要满足 i <= k <= j 。

请你返回  子数组的最大可能 分数 。

 

示例 1:

输入:nums = [1,4,3,7,4,5], k = 3
输出:15
解释:最优子数组的左右端点下标是 (1, 5) ,分数为 min(4,3,7,4,5) * (5-1+1) = 3 * 5 = 15 。

示例 2:

输入:nums = [5,5,4,5,4,1,1,1], k = 0
输出:20
解释:最优子数组的左右端点下标是 (0, 4) ,分数为 min(5,5,4,5,4) * (4-0+1) = 4 * 5 = 20 。

 

提示:

  • 1 <= nums.length <= 105
  • 1 <= nums[i] <= 2 * 104
  • 0 <= k < nums.length

解法

方法一:单调栈

我们可以枚举 $nums$ 中的每个元素 $nums[i]$ 作为子数组的最小值,利用单调栈找出其左边第一个小于 $nums[i]$ 的位置 $left[i]$ 和右边第一个小于等于 $nums[i]$ 的位置 $right[i]$,则以 $nums[i]$ 为最小值的子数组的分数为 $nums[i] \times (right[i] - left[i] - 1)$

需要注意的是,只有当左右边界 $left[i]$$right[i]$ 满足 $left[i]+1 \leq k \leq right[i]-1$ 时,答案才有可能更新。

时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 为数组 $nums$ 的长度。

Python3

class Solution:
    def maximumScore(self, nums: List[int], k: int) -> int:
        n = len(nums)
        left = [-1] * n
        right = [n] * n
        stk = []
        for i, v in enumerate(nums):
            while stk and nums[stk[-1]] >= v:
                stk.pop()
            if stk:
                left[i] = stk[-1]
            stk.append(i)
        stk = []
        for i in range(n - 1, -1, -1):
            v = nums[i]
            while stk and nums[stk[-1]] > v:
                stk.pop()
            if stk:
                right[i] = stk[-1]
            stk.append(i)
        ans = 0
        for i, v in enumerate(nums):
            if left[i] + 1 <= k <= right[i] - 1:
                ans = max(ans, v * (right[i] - left[i] - 1))
        return ans

Java

class Solution {
    public int maximumScore(int[] nums, int k) {
        int n = nums.length;
        int[] left = new int[n];
        int[] right = new int[n];
        Arrays.fill(left, -1);
        Arrays.fill(right, n);
        Deque<Integer> stk = new ArrayDeque<>();
        for (int i = 0; i < n; ++i) {
            int v = nums[i];
            while (!stk.isEmpty() && nums[stk.peek()] >= v) {
                stk.pop();
            }
            if (!stk.isEmpty()) {
                left[i] = stk.peek();
            }
            stk.push(i);
        }
        stk.clear();
        for (int i = n - 1; i >= 0; --i) {
            int v = nums[i];
            while (!stk.isEmpty() && nums[stk.peek()] > v) {
                stk.pop();
            }
            if (!stk.isEmpty()) {
                right[i] = stk.peek();
            }
            stk.push(i);
        }
        int ans = 0;
        for (int i = 0; i < n; ++i) {
            if (left[i] + 1 <= k && k <= right[i] - 1) {
                ans = Math.max(ans, nums[i] * (right[i] - left[i] - 1));
            }
        }
        return ans;
    }
}

C++

class Solution {
public:
    int maximumScore(vector<int>& nums, int k) {
        int n = nums.size();
        vector<int> left(n, -1);
        vector<int> right(n, n);
        stack<int> stk;
        for (int i = 0; i < n; ++i) {
            int v = nums[i];
            while (!stk.empty() && nums[stk.top()] >= v) {
                stk.pop();
            }
            if (!stk.empty()) {
                left[i] = stk.top();
            }
            stk.push(i);
        }
        stk = stack<int>();
        for (int i = n - 1; i >= 0; --i) {
            int v = nums[i];
            while (!stk.empty() && nums[stk.top()] > v) {
                stk.pop();
            }
            if (!stk.empty()) {
                right[i] = stk.top();
            }
            stk.push(i);
        }
        int ans = 0;
        for (int i = 0; i < n; ++i) {
            if (left[i] + 1 <= k && k <= right[i] - 1) {
                ans = max(ans, nums[i] * (right[i] - left[i] - 1));
            }
        }
        return ans;
    }
};

Go

func maximumScore(nums []int, k int) (ans int) {
	n := len(nums)
	left := make([]int, n)
	right := make([]int, n)
	for i := range left {
		left[i] = -1
		right[i] = n
	}
	stk := []int{}
	for i, v := range nums {
		for len(stk) > 0 && nums[stk[len(stk)-1]] >= v {
			stk = stk[:len(stk)-1]
		}
		if len(stk) > 0 {
			left[i] = stk[len(stk)-1]
		}
		stk = append(stk, i)
	}
	stk = []int{}
	for i := n - 1; i >= 0; i-- {
		v := nums[i]
		for len(stk) > 0 && nums[stk[len(stk)-1]] > v {
			stk = stk[:len(stk)-1]
		}
		if len(stk) > 0 {
			right[i] = stk[len(stk)-1]
		}
		stk = append(stk, i)
	}
	for i, v := range nums {
		if left[i]+1 <= k && k <= right[i]-1 {
			ans = max(ans, v*(right[i]-left[i]-1))
		}
	}
	return
}

TypeScript

function maximumScore(nums: number[], k: number): number {
    const n = nums.length;
    const left: number[] = Array(n).fill(-1);
    const right: number[] = Array(n).fill(n);
    const stk: number[] = [];
    for (let i = 0; i < n; ++i) {
        while (stk.length && nums[stk.at(-1)] >= nums[i]) {
            stk.pop();
        }
        if (stk.length) {
            left[i] = stk.at(-1);
        }
        stk.push(i);
    }
    stk.length = 0;
    for (let i = n - 1; ~i; --i) {
        while (stk.length && nums[stk.at(-1)] > nums[i]) {
            stk.pop();
        }
        if (stk.length) {
            right[i] = stk.at(-1);
        }
        stk.push(i);
    }
    let ans = 0;
    for (let i = 0; i < n; ++i) {
        if (left[i] + 1 <= k && k <= right[i] - 1) {
            ans = Math.max(ans, nums[i] * (right[i] - left[i] - 1));
        }
    }
    return ans;
}