Skip to content

Latest commit

 

History

History
237 lines (189 loc) · 6.52 KB

File metadata and controls

237 lines (189 loc) · 6.52 KB
comments difficulty edit_url rating source tags
true
中等
1867
第 36 场双周赛 Q3
贪心
数组
矩阵

English Version

题目描述

给你两个非负整数数组 rowSum 和 colSum ,其中 rowSum[i] 是二维矩阵中第 i 行元素的和, colSum[j] 是第 j 列元素的和。换言之你不知道矩阵里的每个元素,但是你知道每一行和每一列的和。

请找到大小为 rowSum.length x colSum.length 的任意 非负整数 矩阵,且该矩阵满足 rowSum 和 colSum 的要求。

请你返回任意一个满足题目要求的二维矩阵,题目保证存在 至少一个 可行矩阵。

 

示例 1:

输入:rowSum = [3,8], colSum = [4,7]
输出:[[3,0],
      [1,7]]
解释:
第 0 行:3 + 0 = 3 == rowSum[0]
第 1 行:1 + 7 = 8 == rowSum[1]
第 0 列:3 + 1 = 4 == colSum[0]
第 1 列:0 + 7 = 7 == colSum[1]
行和列的和都满足题目要求,且所有矩阵元素都是非负的。
另一个可行的矩阵为:[[1,2],
                  [3,5]]

示例 2:

输入:rowSum = [5,7,10], colSum = [8,6,8]
输出:[[0,5,0],
      [6,1,0],
      [2,0,8]]

示例 3:

输入:rowSum = [14,9], colSum = [6,9,8]
输出:[[0,9,5],
      [6,0,3]]

示例 4:

输入:rowSum = [1,0], colSum = [1]
输出:[[1],
      [0]]

示例 5:

输入:rowSum = [0], colSum = [0]
输出:[[0]]

 

提示:

  • 1 <= rowSum.length, colSum.length <= 500
  • 0 <= rowSum[i], colSum[i] <= 108
  • sum(rowSum) == sum(colSum)

解法

方法一:贪心 + 构造

我们可以先初始化一个 $m$$n$ 列的答案矩阵 $ans$

接下来,遍历矩阵的每一个位置 $(i, j)$,将该位置的元素设为 $x = min(rowSum[i], colSum[j])$,并将 $rowSum[i]$$colSum[j]$ 分别减去 $x$。遍历完所有的位置后,我们就可以得到一个满足题目要求的矩阵 $ans$

以上策略的正确性说明如下:

根据题目的要求,我们知道 $rowSum$$colSum$ 的和是相等的,那么 $rowSum[0]$ 一定小于等于 $\sum_{j = 0}^{n - 1} colSum[j]$。所以,在经过 $n$ 次操作后,一定能够使得 $rowSum[0]$$0$,并且保证对任意 $j \in [0, n - 1]$,都有 $colSum[j] \geq 0$

因此,我们把原问题缩小为一个 $m-1$ 行和 $n$ 列的子问题,继续进行上述的操作,直到 $rowSum$$colSum$ 中的所有元素都为 $0$,就可以得到一个满足题目要求的矩阵 $ans$

时间复杂度 $O(m \times n)$,空间复杂度 $O(m \times n)$。其中 $m$$n$ 分别为 $rowSum$$colSum$ 的长度。

Python3

class Solution:
    def restoreMatrix(self, rowSum: List[int], colSum: List[int]) -> List[List[int]]:
        m, n = len(rowSum), len(colSum)
        ans = [[0] * n for _ in range(m)]
        for i in range(m):
            for j in range(n):
                x = min(rowSum[i], colSum[j])
                ans[i][j] = x
                rowSum[i] -= x
                colSum[j] -= x
        return ans

Java

class Solution {
    public int[][] restoreMatrix(int[] rowSum, int[] colSum) {
        int m = rowSum.length;
        int n = colSum.length;
        int[][] ans = new int[m][n];
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                int x = Math.min(rowSum[i], colSum[j]);
                ans[i][j] = x;
                rowSum[i] -= x;
                colSum[j] -= x;
            }
        }
        return ans;
    }
}

C++

class Solution {
public:
    vector<vector<int>> restoreMatrix(vector<int>& rowSum, vector<int>& colSum) {
        int m = rowSum.size(), n = colSum.size();
        vector<vector<int>> ans(m, vector<int>(n));
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                int x = min(rowSum[i], colSum[j]);
                ans[i][j] = x;
                rowSum[i] -= x;
                colSum[j] -= x;
            }
        }
        return ans;
    }
};

Go

func restoreMatrix(rowSum []int, colSum []int) [][]int {
	m, n := len(rowSum), len(colSum)
	ans := make([][]int, m)
	for i := range ans {
		ans[i] = make([]int, n)
	}
	for i := range rowSum {
		for j := range colSum {
			x := min(rowSum[i], colSum[j])
			ans[i][j] = x
			rowSum[i] -= x
			colSum[j] -= x
		}
	}
	return ans
}

TypeScript

function restoreMatrix(rowSum: number[], colSum: number[]): number[][] {
    const m = rowSum.length;
    const n = colSum.length;
    const ans = Array.from(new Array(m), () => new Array(n).fill(0));
    for (let i = 0; i < m; i++) {
        for (let j = 0; j < n; j++) {
            const x = Math.min(rowSum[i], colSum[j]);
            ans[i][j] = x;
            rowSum[i] -= x;
            colSum[j] -= x;
        }
    }
    return ans;
}

JavaScript

/**
 * @param {number[]} rowSum
 * @param {number[]} colSum
 * @return {number[][]}
 */
var restoreMatrix = function (rowSum, colSum) {
    const m = rowSum.length;
    const n = colSum.length;
    const ans = Array.from(new Array(m), () => new Array(n).fill(0));
    for (let i = 0; i < m; i++) {
        for (let j = 0; j < n; j++) {
            const x = Math.min(rowSum[i], colSum[j]);
            ans[i][j] = x;
            rowSum[i] -= x;
            colSum[j] -= x;
        }
    }
    return ans;
};