Skip to content

Latest commit

 

History

History
206 lines (166 loc) · 5.11 KB

File metadata and controls

206 lines (166 loc) · 5.11 KB
comments difficulty edit_url tags
true
简单
贪心
数组

English Version

题目描述

假设有一个很长的花坛,一部分地块种植了花,另一部分却没有。可是,花不能种植在相邻的地块上,它们会争夺水源,两者都会死去。

给你一个整数数组 flowerbed 表示花坛,由若干 01 组成,其中 0 表示没种植花,1 表示种植了花。另有一个数 n ,能否在不打破种植规则的情况下种入 n 朵花?能则返回 true ,不能则返回 false 。

 

示例 1:

输入:flowerbed = [1,0,0,0,1], n = 1
输出:true

示例 2:

输入:flowerbed = [1,0,0,0,1], n = 2
输出:false

 

提示:

  • 1 <= flowerbed.length <= 2 * 104
  • flowerbed[i]01
  • flowerbed 中不存在相邻的两朵花
  • 0 <= n <= flowerbed.length

解法

方法一:贪心

我们直接遍历数组 $flowerbed$,对于每个位置 $i$,如果 $flowerbed[i]=0$,并且其左右相邻位置都为 $0$,则我们可以在该位置种花,否则不能。最后我们统计可以种下的花的数量,如果其不小于 $n$,则返回 $true$,否则返回 $false$

时间复杂度 $O(n)$,其中 $n$ 是数组 $flowerbed$ 的长度。我们只需要遍历数组一次。空间复杂度 $O(1)$

Python3

class Solution:
    def canPlaceFlowers(self, flowerbed: List[int], n: int) -> bool:
        flowerbed = [0] + flowerbed + [0]
        for i in range(1, len(flowerbed) - 1):
            if sum(flowerbed[i - 1 : i + 2]) == 0:
                flowerbed[i] = 1
                n -= 1
        return n <= 0

Java

class Solution {
    public boolean canPlaceFlowers(int[] flowerbed, int n) {
        int m = flowerbed.length;
        for (int i = 0; i < m; ++i) {
            int l = i == 0 ? 0 : flowerbed[i - 1];
            int r = i == m - 1 ? 0 : flowerbed[i + 1];
            if (l + flowerbed[i] + r == 0) {
                flowerbed[i] = 1;
                --n;
            }
        }
        return n <= 0;
    }
}

C++

class Solution {
public:
    bool canPlaceFlowers(vector<int>& flowerbed, int n) {
        int m = flowerbed.size();
        for (int i = 0; i < m; ++i) {
            int l = i == 0 ? 0 : flowerbed[i - 1];
            int r = i == m - 1 ? 0 : flowerbed[i + 1];
            if (l + flowerbed[i] + r == 0) {
                flowerbed[i] = 1;
                --n;
            }
        }
        return n <= 0;
    }
};

Go

func canPlaceFlowers(flowerbed []int, n int) bool {
	m := len(flowerbed)
	for i, v := range flowerbed {
		l, r := 0, 0
		if i > 0 {
			l = flowerbed[i-1]
		}
		if i < m-1 {
			r = flowerbed[i+1]
		}
		if l+v+r == 0 {
			flowerbed[i] = 1
			n--
		}
	}
	return n <= 0
}

TypeScript

function canPlaceFlowers(flowerbed: number[], n: number): boolean {
    const m = flowerbed.length;
    for (let i = 0; i < m; ++i) {
        const l = i === 0 ? 0 : flowerbed[i - 1];
        const r = i === m - 1 ? 0 : flowerbed[i + 1];
        if (l + flowerbed[i] + r === 0) {
            flowerbed[i] = 1;
            --n;
        }
    }
    return n <= 0;
}

Rust

impl Solution {
    pub fn can_place_flowers(flowerbed: Vec<i32>, n: i32) -> bool {
        let (mut flowers, mut cnt) = (vec![0], 0);
        flowers.append(&mut flowerbed.clone());
        flowers.push(0);

        for i in 1..flowers.len() - 1 {
            let (l, r) = (flowers[i - 1], flowers[i + 1]);
            if l + flowers[i] + r == 0 {
                flowers[i] = 1;
                cnt += 1;
            }
        }
        cnt >= n
    }
}

PHP

class Solution {
    /**
     * @param Integer[] $flowerbed
     * @param Integer $n
     * @return Boolean
     */
    function canPlaceFlowers($flowerbed, $n) {
        array_push($flowerbed, 0);
        array_unshift($flowerbed, 0);
        for ($i = 1; $i < count($flowerbed) - 1; $i++) {
            if ($flowerbed[$i] === 0) {
                if ($flowerbed[$i - 1] === 0 && $flowerbed[$i + 1] === 0) {
                    $flowerbed[$i] = 1;
                    $n--;
                }
            }
        }
        return $n <= 0;
    }
}