Skip to content

Latest commit

 

History

History
261 lines (214 loc) · 5.43 KB

File metadata and controls

261 lines (214 loc) · 5.43 KB
comments difficulty edit_url tags
true
中等
深度优先搜索
数组

English Version

题目描述

索引从0开始长度为N的数组A,包含0N - 1的所有整数。找到最大的集合S并返回其大小,其中 S[i] = {A[i], A[A[i]], A[A[A[i]]], ... }且遵守以下的规则。

假设选择索引为i的元素A[i]S的第一个元素,S的下一个元素应该是A[A[i]],之后是A[A[A[i]]]... 以此类推,不断添加直到S出现重复的元素。

 

示例 1:

输入: A = [5,4,0,3,1,6,2]
输出: 4
解释: 
A[0] = 5, A[1] = 4, A[2] = 0, A[3] = 3, A[4] = 1, A[5] = 6, A[6] = 2.

其中一种最长的 S[K]:
S[0] = {A[0], A[5], A[6], A[2]} = {5, 6, 2, 0}

 

提示:

  • 1 <= nums.length <= 105
  • 0 <= nums[i] < nums.length
  • A中不含有重复的元素。

解法

方法一:图

嵌套数组最终一定会形成一个环,在枚举 $nums[i]$ 的过程中,可以用 $vis$ 数组剪枝,避免重复枚举同一个环。

时间复杂度 $O(n)$,空间复杂度 $O(n)$

Python3

class Solution:
    def arrayNesting(self, nums: List[int]) -> int:
        n = len(nums)
        vis = [False] * n
        res = 0
        for i in range(n):
            if vis[i]:
                continue
            cur, m = nums[i], 1
            vis[cur] = True
            while nums[cur] != nums[i]:
                cur = nums[cur]
                m += 1
                vis[cur] = True
            res = max(res, m)
        return res

Java

class Solution {
    public int arrayNesting(int[] nums) {
        int n = nums.length;
        boolean[] vis = new boolean[n];
        int res = 0;
        for (int i = 0; i < n; i++) {
            if (vis[i]) {
                continue;
            }
            int cur = nums[i], m = 1;
            vis[cur] = true;
            while (nums[cur] != nums[i]) {
                cur = nums[cur];
                m++;
                vis[cur] = true;
            }
            res = Math.max(res, m);
        }
        return res;
    }
}

C++

class Solution {
public:
    int arrayNesting(vector<int>& nums) {
        int n = nums.size();
        vector<bool> vis(n);
        int res = 0;
        for (int i = 0; i < n; ++i) {
            if (vis[i]) continue;
            int cur = nums[i], m = 1;
            vis[cur] = true;
            while (nums[cur] != nums[i]) {
                cur = nums[cur];
                ++m;
                vis[cur] = true;
            }
            res = max(res, m);
        }
        return res;
    }
};

Go

func arrayNesting(nums []int) int {
	n := len(nums)
	vis := make([]bool, n)
	ans := 0
	for i := 0; i < n; i++ {
		if vis[i] {
			continue
		}
		cur, m := nums[i], 1
		vis[cur] = true
		for nums[cur] != nums[i] {
			cur = nums[cur]
			m++
			vis[cur] = true
		}
		if m > ans {
			ans = m
		}
	}
	return ans
}

方法二:原地标记

由于 $nums$ 元素均在 $[0..n-1]$ 之间,因此,对于访问过的元素,我们可以令 $nums[i]=n$,从而省略 $vis$ 数组。

时间复杂度 $O(n)$,空间复杂度 $O(1)$

Python3

class Solution:
    def arrayNesting(self, nums: List[int]) -> int:
        ans, n = 0, len(nums)
        for i in range(n):
            cnt = 0
            while nums[i] != n:
                j = nums[i]
                nums[i] = n
                i = j
                cnt += 1
            ans = max(ans, cnt)
        return ans

Java

class Solution {
    public int arrayNesting(int[] nums) {
        int ans = 0, n = nums.length;
        for (int i = 0; i < n; ++i) {
            int cnt = 0;
            int j = i;
            while (nums[j] < n) {
                int k = nums[j];
                nums[j] = n;
                j = k;
                ++cnt;
            }
            ans = Math.max(ans, cnt);
        }
        return ans;
    }
}

C++

class Solution {
public:
    int arrayNesting(vector<int>& nums) {
        int ans = 0, n = nums.size();
        for (int i = 0; i < n; ++i) {
            int cnt = 0;
            int j = i;
            while (nums[j] < n) {
                int k = nums[j];
                nums[j] = n;
                j = k;
                ++cnt;
            }
            ans = max(ans, cnt);
        }
        return ans;
    }
};

Go

func arrayNesting(nums []int) int {
	ans, n := 0, len(nums)
	for i := range nums {
		cnt, j := 0, i
		for nums[j] != n {
			k := nums[j]
			nums[j] = n
			j = k
			cnt++
		}
		if ans < cnt {
			ans = cnt
		}
	}
	return ans
}