Skip to content

Latest commit

 

History

History
192 lines (154 loc) · 5.47 KB

File metadata and controls

192 lines (154 loc) · 5.47 KB
comments difficulty edit_url tags
true
中等
数组
动态规划
矩阵

English Version

题目描述

给定一个 m x n 的二进制矩阵 mat ,返回矩阵中最长的连续1线段。

这条线段可以是水平的、垂直的、对角线的或者反对角线的。

 

示例 1:

输入: mat = [[0,1,1,0],[0,1,1,0],[0,0,0,1]]
输出: 3

示例 2:

输入: mat = [[1,1,1,1],[0,1,1,0],[0,0,0,1]]
输出: 4

 

提示:

  • m == mat.length
  • n == mat[i].length
  • 1 <= m, n <= 104
  • 1 <= m * n <= 104
  • mat[i][j] 不是 0 就是 1.

解法

方法一:动态规划

我们定义 $f[i][j][k]$ 表示方向为 $k$,且以 $(i, j)$ 结尾的最长连续 $1$ 的长度。其中 $k$ 的取值范围为 $0, 1, 2, 3$,分别表示水平、垂直、对角线、反对角线。

我们也可以用四个二维数组分别表示四个方向的最长连续 $1$ 的长度。

遍历矩阵,当遇到 $1$ 时,更新 $f[i][j][k]$ 的值。对于每个位置 $(i, j)$,我们只需要更新其四个方向的值即可。然后更新答案。

时间复杂度 $O(m \times n)$,空间复杂度 $O(m \times n)$。其中 $m$$n$ 分别为矩阵的行数和列数。

Python3

class Solution:
    def longestLine(self, mat: List[List[int]]) -> int:
        m, n = len(mat), len(mat[0])
        a = [[0] * (n + 2) for _ in range(m + 2)]
        b = [[0] * (n + 2) for _ in range(m + 2)]
        c = [[0] * (n + 2) for _ in range(m + 2)]
        d = [[0] * (n + 2) for _ in range(m + 2)]
        ans = 0
        for i in range(1, m + 1):
            for j in range(1, n + 1):
                if mat[i - 1][j - 1]:
                    a[i][j] = a[i - 1][j] + 1
                    b[i][j] = b[i][j - 1] + 1
                    c[i][j] = c[i - 1][j - 1] + 1
                    d[i][j] = d[i - 1][j + 1] + 1
                    ans = max(ans, a[i][j], b[i][j], c[i][j], d[i][j])
        return ans

Java

class Solution {
    public int longestLine(int[][] mat) {
        int m = mat.length, n = mat[0].length;
        int[][] a = new int[m + 2][n + 2];
        int[][] b = new int[m + 2][n + 2];
        int[][] c = new int[m + 2][n + 2];
        int[][] d = new int[m + 2][n + 2];
        int ans = 0;
        for (int i = 1; i <= m; ++i) {
            for (int j = 1; j <= n; ++j) {
                if (mat[i - 1][j - 1] == 1) {
                    a[i][j] = a[i - 1][j] + 1;
                    b[i][j] = b[i][j - 1] + 1;
                    c[i][j] = c[i - 1][j - 1] + 1;
                    d[i][j] = d[i - 1][j + 1] + 1;
                    ans = max(ans, a[i][j], b[i][j], c[i][j], d[i][j]);
                }
            }
        }
        return ans;
    }

    private int max(int... arr) {
        int ans = 0;
        for (int v : arr) {
            ans = Math.max(ans, v);
        }
        return ans;
    }
}

C++

class Solution {
public:
    int longestLine(vector<vector<int>>& mat) {
        int m = mat.size(), n = mat[0].size();
        vector<vector<int>> a(m + 2, vector<int>(n + 2));
        vector<vector<int>> b(m + 2, vector<int>(n + 2));
        vector<vector<int>> c(m + 2, vector<int>(n + 2));
        vector<vector<int>> d(m + 2, vector<int>(n + 2));
        int ans = 0;
        for (int i = 1; i <= m; ++i) {
            for (int j = 1; j <= n; ++j) {
                if (mat[i - 1][j - 1]) {
                    a[i][j] = a[i - 1][j] + 1;
                    b[i][j] = b[i][j - 1] + 1;
                    c[i][j] = c[i - 1][j - 1] + 1;
                    d[i][j] = d[i - 1][j + 1] + 1;
                    ans = max(ans, max(a[i][j], max(b[i][j], max(c[i][j], d[i][j]))));
                }
            }
        }
        return ans;
    }
};

Go

func longestLine(mat [][]int) (ans int) {
	m, n := len(mat), len(mat[0])
	f := make([][][4]int, m+2)
	for i := range f {
		f[i] = make([][4]int, n+2)
	}
	for i := 1; i <= m; i++ {
		for j := 1; j <= n; j++ {
			if mat[i-1][j-1] == 1 {
				f[i][j][0] = f[i-1][j][0] + 1
				f[i][j][1] = f[i][j-1][1] + 1
				f[i][j][2] = f[i-1][j-1][2] + 1
				f[i][j][3] = f[i-1][j+1][3] + 1
				for _, v := range f[i][j] {
					if ans < v {
						ans = v
					}
				}
			}
		}
	}
	return
}