Skip to content

Latest commit

 

History

History
417 lines (352 loc) · 10.1 KB

File metadata and controls

417 lines (352 loc) · 10.1 KB
comments difficulty edit_url tags
true
中等
深度优先搜索
广度优先搜索
并查集

English Version

题目描述

n 个城市,其中一些彼此相连,另一些没有相连。如果城市 a 与城市 b 直接相连,且城市 b 与城市 c 直接相连,那么城市 a 与城市 c 间接相连。

省份 是一组直接或间接相连的城市,组内不含其他没有相连的城市。

给你一个 n x n 的矩阵 isConnected ,其中 isConnected[i][j] = 1 表示第 i 个城市和第 j 个城市直接相连,而 isConnected[i][j] = 0 表示二者不直接相连。

返回矩阵中 省份 的数量。

 

示例 1:

输入:isConnected = [[1,1,0],[1,1,0],[0,0,1]]
输出:2

示例 2:

输入:isConnected = [[1,0,0],[0,1,0],[0,0,1]]
输出:3

 

提示:

  • 1 <= n <= 200
  • n == isConnected.length
  • n == isConnected[i].length
  • isConnected[i][j]10
  • isConnected[i][i] == 1
  • isConnected[i][j] == isConnected[j][i]

解法

方法一:DFS

我们创建一个数组 $\textit{vis}$,用于记录每个城市是否被访问过。

接下来,遍历每个城市 $i$,如果该城市未被访问过,则从该城市开始深度优先搜索,通过矩阵 $\textit{isConnected}$ 得到与该城市直接相连的城市有哪些,这些城市和该城市属于同一个省,然后对这些城市继续深度优先搜索,直到同一个省的所有城市都被访问到,即可得到一个省,将答案 $\textit{ans}$$1$,然后遍历下一个未被访问过的城市,直到遍历完所有的城市。

最后返回答案即可。

时间复杂度 $O(n^2)$,空间复杂度 $O(n)$。其中 $n$ 是城市的数量。

Python3

class Solution:
    def findCircleNum(self, isConnected: List[List[int]]) -> int:
        def dfs(i: int):
            vis[i] = True
            for j, x in enumerate(isConnected[i]):
                if not vis[j] and x:
                    dfs(j)

        n = len(isConnected)
        vis = [False] * n
        ans = 0
        for i in range(n):
            if not vis[i]:
                dfs(i)
                ans += 1
        return ans

Java

class Solution {
    private int[][] g;
    private boolean[] vis;

    public int findCircleNum(int[][] isConnected) {
        g = isConnected;
        int n = g.length;
        vis = new boolean[n];
        int ans = 0;
        for (int i = 0; i < n; ++i) {
            if (!vis[i]) {
                dfs(i);
                ++ans;
            }
        }
        return ans;
    }

    private void dfs(int i) {
        vis[i] = true;
        for (int j = 0; j < g.length; ++j) {
            if (!vis[j] && g[i][j] == 1) {
                dfs(j);
            }
        }
    }
}

C++

class Solution {
public:
    int findCircleNum(vector<vector<int>>& isConnected) {
        int n = isConnected.size();
        int ans = 0;
        bool vis[n];
        memset(vis, false, sizeof(vis));
        auto dfs = [&](this auto&& dfs, int i) -> void {
            vis[i] = true;
            for (int j = 0; j < n; ++j) {
                if (!vis[j] && isConnected[i][j]) {
                    dfs(j);
                }
            }
        };
        for (int i = 0; i < n; ++i) {
            if (!vis[i]) {
                dfs(i);
                ++ans;
            }
        }
        return ans;
    }
};

Go

func findCircleNum(isConnected [][]int) (ans int) {
	n := len(isConnected)
	vis := make([]bool, n)
	var dfs func(int)
	dfs = func(i int) {
		vis[i] = true
		for j, x := range isConnected[i] {
			if !vis[j] && x == 1 {
				dfs(j)
			}
		}
	}
	for i, v := range vis {
		if !v {
			ans++
			dfs(i)
		}
	}
	return
}

TypeScript

function findCircleNum(isConnected: number[][]): number {
    const n = isConnected.length;
    const vis: boolean[] = new Array(n).fill(false);
    const dfs = (i: number) => {
        vis[i] = true;
        for (let j = 0; j < n; ++j) {
            if (!vis[j] && isConnected[i][j]) {
                dfs(j);
            }
        }
    };
    let ans = 0;
    for (let i = 0; i < n; ++i) {
        if (!vis[i]) {
            dfs(i);
            ++ans;
        }
    }
    return ans;
}

Rust

impl Solution {
    fn dfs(is_connected: &mut Vec<Vec<i32>>, vis: &mut Vec<bool>, i: usize) {
        vis[i] = true;
        for j in 0..is_connected.len() {
            if vis[j] || is_connected[i][j] == 0 {
                continue;
            }
            Self::dfs(is_connected, vis, j);
        }
    }

    pub fn find_circle_num(mut is_connected: Vec<Vec<i32>>) -> i32 {
        let n = is_connected.len();
        let mut vis = vec![false; n];
        let mut res = 0;
        for i in 0..n {
            if vis[i] {
                continue;
            }
            res += 1;
            Self::dfs(&mut is_connected, &mut vis, i);
        }
        res
    }
}

方法二:并查集

我们也可以用并查集维护每个连通分量,初始时,每个城市都属于不同的连通分量,所以省份数量为 $n$

接下来,遍历矩阵 $\textit{isConnected}$,如果两个城市 $(i, j)$ 之间有相连关系,并且处于两个不同的连通分量,则它们将被合并成为一个连通分量,然后将省份数量减去 $1$

最后返回省份数量即可。

时间复杂度 $O(n^2 \times \log n)$,空间复杂度 $O(n)$。其中 $n$ 是城市的数量,而 $\log n$ 是并查集的路径压缩的时间复杂度。

Python3

class Solution:
    def findCircleNum(self, isConnected: List[List[int]]) -> int:
        def find(x: int) -> int:
            if p[x] != x:
                p[x] = find(p[x])
            return p[x]

        n = len(isConnected)
        p = list(range(n))
        ans = n
        for i in range(n):
            for j in range(i + 1, n):
                if isConnected[i][j]:
                    pa, pb = find(i), find(j)
                    if pa != pb:
                        p[pa] = pb
                        ans -= 1
        return ans

Java

class Solution {
    private int[] p;

    public int findCircleNum(int[][] isConnected) {
        int n = isConnected.length;
        p = new int[n];
        for (int i = 0; i < n; ++i) {
            p[i] = i;
        }
        int ans = n;
        for (int i = 0; i < n; ++i) {
            for (int j = i + 1; j < n; ++j) {
                if (isConnected[i][j] == 1) {
                    int pa = find(i), pb = find(j);
                    if (pa != pb) {
                        p[pa] = pb;
                        --ans;
                    }
                }
            }
        }
        return ans;
    }

    private int find(int x) {
        if (p[x] != x) {
            p[x] = find(p[x]);
        }
        return p[x];
    }
}

C++

class Solution {
public:
    int findCircleNum(vector<vector<int>>& isConnected) {
        int n = isConnected.size();
        int p[n];
        iota(p, p + n, 0);
        auto find = [&](this auto&& find, int x) -> int {
            if (p[x] != x) {
                p[x] = find(p[x]);
            }
            return p[x];
        };
        int ans = n;
        for (int i = 0; i < n; ++i) {
            for (int j = i + 1; j < n; ++j) {
                if (isConnected[i][j]) {
                    int pa = find(i), pb = find(j);
                    if (pa != pb) {
                        p[pa] = pb;
                        --ans;
                    }
                }
            }
        }
        return ans;
    }
};

Go

func findCircleNum(isConnected [][]int) (ans int) {
	n := len(isConnected)
	p := make([]int, n)
	for i := range p {
		p[i] = i
	}
	var find func(x int) int
	find = func(x int) int {
		if p[x] != x {
			p[x] = find(p[x])
		}
		return p[x]
	}
	ans = n
	for i := 0; i < n; i++ {
		for j := 0; j < n; j++ {
			if isConnected[i][j] == 1 {
				pa, pb := find(i), find(j)
				if pa != pb {
					p[pa] = pb
					ans--
				}
			}
		}
	}
	return
}

TypeScript

function findCircleNum(isConnected: number[][]): number {
    const n = isConnected.length;
    const p: number[] = Array.from({ length: n }, (_, i) => i);
    const find = (x: number): number => {
        if (p[x] !== x) {
            p[x] = find(p[x]);
        }
        return p[x];
    };
    let ans = n;
    for (let i = 0; i < n; ++i) {
        for (let j = i + 1; j < n; ++j) {
            if (isConnected[i][j]) {
                const pa = find(i);
                const pb = find(j);
                if (pa !== pb) {
                    p[pa] = pb;
                    --ans;
                }
            }
        }
    }
    return ans;
}