Skip to content

Latest commit

 

History

History
278 lines (237 loc) · 8.8 KB

File metadata and controls

278 lines (237 loc) · 8.8 KB
comments difficulty edit_url tags
true
困难
深度优先搜索
广度优先搜索
数组
字符串
矩阵
最短路
堆(优先队列)

English Version

题目描述

由空地和墙组成的迷宫中有一个。球可以向上(u)下(d)左(l)右(r)四个方向滚动,但在遇到墙壁前不会停止滚动。当球停下时,可以选择下一个方向。迷宫中还有一个,当球运动经过洞时,就会掉进洞里。

给定球的起始位置,目的地迷宫,找出让球以最短距离掉进洞里的路径。 距离的定义是球从起始位置(不包括)到目的地(包括)经过的空地个数。通过'u', 'd', 'l' 和 'r'输出球的移动方向。 由于可能有多条最短路径, 请输出字典序最小的路径如果球无法进入洞,输出"impossible"。

迷宫由一个0和1的二维数组表示。 1表示墙壁,0表示空地。你可以假定迷宫的边缘都是墙壁。起始位置和目的地的坐标通过行号和列号给出。

 

示例1:

输入 1: 迷宫由以下二维数组表示

0 0 0 0 0
1 1 0 0 1
0 0 0 0 0
0 1 0 0 1
0 1 0 0 0

输入 2: 球的初始位置 (rowBall, colBall) = (4, 3)
输入 3: 洞的位置 (rowHole, colHole) = (0, 1)

输出: "lul"

解析: 有两条让球进洞的最短路径。
第一条路径是 左 -> 上 -> 左, 记为 "lul".
第二条路径是 上 -> 左, 记为 'ul'.
两条路径都具有最短距离6, 但'l' < 'u',故第一条路径字典序更小。因此输出"lul"。

示例 2:

输入 1: 迷宫由以下二维数组表示

0 0 0 0 0
1 1 0 0 1
0 0 0 0 0
0 1 0 0 1
0 1 0 0 0

输入 2: 球的初始位置 (rowBall, colBall) = (4, 3)
输入 3: 洞的位置 (rowHole, colHole) = (3, 0)

输出: "impossible"

示例: 球无法到达洞。

 

注意:

  1. 迷宫中只有一个球和一个目的地。
  2. 球和洞都在空地上,且初始时它们不在同一位置。
  3. 给定的迷宫不包括边界 (如图中的红色矩形), 但你可以假设迷宫的边缘都是墙壁。
  4. 迷宫至少包括2块空地,行数和列数均不超过30。

解法

方法一:BFS

Python3

class Solution:
    def findShortestWay(
        self, maze: List[List[int]], ball: List[int], hole: List[int]
    ) -> str:
        m, n = len(maze), len(maze[0])
        r, c = ball
        rh, ch = hole
        q = deque([(r, c)])
        dist = [[inf] * n for _ in range(m)]
        dist[r][c] = 0
        path = [[None] * n for _ in range(m)]
        path[r][c] = ''
        while q:
            i, j = q.popleft()
            for a, b, d in [(-1, 0, 'u'), (1, 0, 'd'), (0, -1, 'l'), (0, 1, 'r')]:
                x, y, step = i, j, dist[i][j]
                while (
                    0 <= x + a < m
                    and 0 <= y + b < n
                    and maze[x + a][y + b] == 0
                    and (x != rh or y != ch)
                ):
                    x, y = x + a, y + b
                    step += 1
                if dist[x][y] > step or (
                    dist[x][y] == step and path[i][j] + d < path[x][y]
                ):
                    dist[x][y] = step
                    path[x][y] = path[i][j] + d
                    if x != rh or y != ch:
                        q.append((x, y))
        return path[rh][ch] or 'impossible'

Java

class Solution {
    public String findShortestWay(int[][] maze, int[] ball, int[] hole) {
        int m = maze.length;
        int n = maze[0].length;
        int r = ball[0], c = ball[1];
        int rh = hole[0], ch = hole[1];
        Deque<int[]> q = new LinkedList<>();
        q.offer(new int[] {r, c});
        int[][] dist = new int[m][n];
        for (int i = 0; i < m; ++i) {
            Arrays.fill(dist[i], Integer.MAX_VALUE);
        }
        dist[r][c] = 0;
        String[][] path = new String[m][n];
        path[r][c] = "";
        int[][] dirs = {{-1, 0, 'u'}, {1, 0, 'd'}, {0, -1, 'l'}, {0, 1, 'r'}};
        while (!q.isEmpty()) {
            int[] p = q.poll();
            int i = p[0], j = p[1];
            for (int[] dir : dirs) {
                int a = dir[0], b = dir[1];
                String d = String.valueOf((char) (dir[2]));
                int x = i, y = j;
                int step = dist[i][j];
                while (x + a >= 0 && x + a < m && y + b >= 0 && y + b < n && maze[x + a][y + b] == 0
                    && (x != rh || y != ch)) {
                    x += a;
                    y += b;
                    ++step;
                }
                if (dist[x][y] > step
                    || (dist[x][y] == step && (path[i][j] + d).compareTo(path[x][y]) < 0)) {
                    dist[x][y] = step;
                    path[x][y] = path[i][j] + d;
                    if (x != rh || y != ch) {
                        q.offer(new int[] {x, y});
                    }
                }
            }
        }
        return path[rh][ch] == null ? "impossible" : path[rh][ch];
    }
}

C++

class Solution {
public:
    string findShortestWay(vector<vector<int>>& maze, vector<int>& ball, vector<int>& hole) {
        int m = maze.size();
        int n = maze[0].size();
        int r = ball[0], c = ball[1];
        int rh = hole[0], ch = hole[1];
        queue<pair<int, int>> q;
        q.push({r, c});
        vector<vector<int>> dist(m, vector<int>(n, INT_MAX));
        dist[r][c] = 0;
        vector<vector<string>> path(m, vector<string>(n, ""));
        vector<vector<int>> dirs = {{-1, 0, 'u'}, {1, 0, 'd'}, {0, -1, 'l'}, {0, 1, 'r'}};
        while (!q.empty()) {
            auto p = q.front();
            q.pop();
            int i = p.first, j = p.second;
            for (auto& dir : dirs) {
                int a = dir[0], b = dir[1];
                char d = (char) dir[2];
                int x = i, y = j;
                int step = dist[i][j];
                while (x + a >= 0 && x + a < m && y + b >= 0 && y + b < n && maze[x + a][y + b] == 0 && (x != rh || y != ch)) {
                    x += a;
                    y += b;
                    ++step;
                }
                if (dist[x][y] > step || (dist[x][y] == step && (path[i][j] + d < path[x][y]))) {
                    dist[x][y] = step;
                    path[x][y] = path[i][j] + d;
                    if (x != rh || y != ch) q.push({x, y});
                }
            }
        }
        return path[rh][ch] == "" ? "impossible" : path[rh][ch];
    }
};

Go

import "math"

func findShortestWay(maze [][]int, ball []int, hole []int) string {
	m, n := len(maze), len(maze[0])
	r, c := ball[0], ball[1]
	rh, ch := hole[0], hole[1]
	q := [][]int{[]int{r, c}}
	dist := make([][]int, m)
	path := make([][]string, m)
	for i := range dist {
		dist[i] = make([]int, n)
		path[i] = make([]string, n)
		for j := range dist[i] {
			dist[i][j] = math.MaxInt32
			path[i][j] = ""
		}
	}
	dist[r][c] = 0
	dirs := map[string][]int{"u": {-1, 0}, "d": {1, 0}, "l": {0, -1}, "r": {0, 1}}
	for len(q) > 0 {
		p := q[0]
		q = q[1:]
		i, j := p[0], p[1]
		for d, dir := range dirs {
			a, b := dir[0], dir[1]
			x, y := i, j
			step := dist[i][j]
			for x+a >= 0 && x+a < m && y+b >= 0 && y+b < n && maze[x+a][y+b] == 0 && (x != rh || y != ch) {
				x += a
				y += b
				step++
			}
			if dist[x][y] > step || (dist[x][y] == step && (path[i][j]+d) < path[x][y]) {
				dist[x][y] = step
				path[x][y] = path[i][j] + d
				if x != rh || y != ch {
					q = append(q, []int{x, y})
				}
			}
		}
	}
	if path[rh][ch] == "" {
		return "impossible"
	}
	return path[rh][ch]
}