forked from cbuchner1/CudaMiner
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnv_kernel2.cu
1026 lines (878 loc) · 36 KB
/
nv_kernel2.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//
// Experimental Kernel for Kepler (Compute 3.5) devices
// code submitted by nVidia performance engineer Alexey Panteleev
// with modifications by Christian Buchner
//
// for Compute 3.5
// NOTE: compile this .cu module for compute_35,sm_35 with --maxrregcount=80
// for Compute 3.0
// NOTE: compile this .cu module for compute_30,sm_30 with --maxrregcount=63
//
#include <map>
#ifdef WIN32
#include <windows.h>
#endif
#include <stdio.h>
#include <time.h>
#include <sys/time.h>
#include <unistd.h>
#include <cuda.h>
#include "miner.h"
#include "nv_kernel2.h"
#define THREADS_PER_WU 1 // single thread per hash
#if __CUDA_ARCH__ < 350
// Kepler (Compute 3.0)
#define __ldg(x) (*(x))
#endif
// grab lane ID
static __device__ __inline__ unsigned int __laneId() { unsigned int laneId; asm( "mov.u32 %0, %%laneid;" : "=r"( laneId ) ); return laneId; }
// forward references
template <int ALGO> __global__ void nv2_scrypt_core_kernelA(uint32_t *g_idata, int begin, int end);
template <int ALGO> __global__ void nv2_scrypt_core_kernelB(uint32_t *g_odata, int begin, int end);
template <int ALGO> __global__ void nv2_scrypt_core_kernelA_LG(uint32_t *g_idata, int begin, int end, unsigned int LOOKUP_GAP);
template <int ALGO> __global__ void nv2_scrypt_core_kernelB_LG(uint32_t *g_odata, int begin, int end, unsigned int LOOKUP_GAP);
// scratchbuf constants (pointers to scratch buffer for each work unit)
__constant__ uint32_t* c_V[TOTAL_WARP_LIMIT];
// iteration count N
__constant__ uint32_t c_N;
__constant__ uint32_t c_N_1; // N - 1
__constant__ uint32_t c_spacing; // (N+LOOKUP_GAP-1)/LOOKUP_GAP
NV2Kernel::NV2Kernel() : KernelInterface()
{
}
void NV2Kernel::set_scratchbuf_constants(int MAXWARPS, uint32_t** h_V)
{
checkCudaErrors(cudaMemcpyToSymbol(c_V, h_V, MAXWARPS*sizeof(uint32_t*), 0, cudaMemcpyHostToDevice));
}
bool NV2Kernel::run_kernel(dim3 grid, dim3 threads, int WARPS_PER_BLOCK, int thr_id, cudaStream_t stream, uint32_t* d_idata, uint32_t* d_odata, unsigned int N, unsigned int LOOKUP_GAP, bool interactive, bool benchmark, int texture_cache)
{
bool success = true;
// clear CUDA's error variable
cudaGetLastError();
// make some constants available to kernel, update only initially and when changing
static int prev_N[8] = {0,0,0,0,0,0,0,0};
if (N != prev_N[thr_id]) {
uint32_t h_N = N;
checkCudaErrors(cudaMemcpyToSymbolAsync(c_N, &h_N, sizeof(uint32_t), 0, cudaMemcpyHostToDevice, stream));
uint32_t h_N_1 = N-1;
checkCudaErrors(cudaMemcpyToSymbolAsync(c_N_1, &h_N_1, sizeof(uint32_t), 0, cudaMemcpyHostToDevice, stream));
uint32_t h_spacing = (N+LOOKUP_GAP-1)/LOOKUP_GAP;
checkCudaErrors(cudaMemcpyToSymbolAsync(c_spacing, &h_spacing, sizeof(uint32_t), 0, cudaMemcpyHostToDevice, stream));
prev_N[thr_id] = N;
}
// First phase: Sequential writes to scratchpad.
const int batch = device_batchsize[thr_id];
const int sleeptime = 100;
unsigned int pos = 0;
int situation = 0;
do
{
if (LOOKUP_GAP == 1)
switch(opt_algo) {
case ALGO_SCRYPT: nv2_scrypt_core_kernelA<ALGO_SCRYPT> <<< grid, threads, 0, stream >>>(d_idata, pos, min(pos+batch, N)); break;
case ALGO_SCRYPT_JANE: nv2_scrypt_core_kernelA<ALGO_SCRYPT_JANE><<< grid, threads, 0, stream >>>(d_idata, pos, min(pos+batch, N)); break;
}
else
switch(opt_algo) {
case ALGO_SCRYPT: nv2_scrypt_core_kernelA_LG<ALGO_SCRYPT> <<< grid, threads, 0, stream >>>(d_idata, pos, min(pos+batch, N), LOOKUP_GAP); break;
case ALGO_SCRYPT_JANE: nv2_scrypt_core_kernelA_LG<ALGO_SCRYPT_JANE><<< grid, threads, 0, stream >>>(d_idata, pos, min(pos+batch, N), LOOKUP_GAP); break;
}
if (!benchmark && interactive) {
checkCudaErrors(MyStreamSynchronize(stream, ++situation, thr_id));
usleep(sleeptime);
}
pos += batch;
} while (pos < N);
// Second phase: Random read access from scratchpad.
pos = 0;
do
{
if (pos > 0 && !benchmark && interactive) {
checkCudaErrors(MyStreamSynchronize(stream, ++situation, thr_id));
usleep(sleeptime);
}
if (LOOKUP_GAP == 1)
switch(opt_algo) {
case ALGO_SCRYPT: nv2_scrypt_core_kernelB<ALGO_SCRYPT ><<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N)); break;
case ALGO_SCRYPT_JANE: nv2_scrypt_core_kernelB<ALGO_SCRYPT_JANE><<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N)); break;
}
else
switch(opt_algo) {
case ALGO_SCRYPT: nv2_scrypt_core_kernelB_LG<ALGO_SCRYPT ><<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N), LOOKUP_GAP); break;
case ALGO_SCRYPT_JANE: nv2_scrypt_core_kernelB_LG<ALGO_SCRYPT_JANE><<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N), LOOKUP_GAP); break;
}
pos += batch;
} while (pos < N);
// catch any kernel launch failures
if (cudaPeekAtLastError() != cudaSuccess) success = false;
return success;
}
static __device__ uint4& operator^=(uint4& left, const uint4& right)
{
left.x ^= right.x;
left.y ^= right.y;
left.z ^= right.z;
left.w ^= right.w;
return left;
}
__device__ __forceinline__ uint4 __shfl(const uint4 val, unsigned int lane, unsigned int width)
{
return make_uint4(
(unsigned int)__shfl((int)val.x, lane, width),
(unsigned int)__shfl((int)val.y, lane, width),
(unsigned int)__shfl((int)val.z, lane, width),
(unsigned int)__shfl((int)val.w, lane, width));
}
__device__ __forceinline__ void __transposed_write_BC(uint4 (&B)[4], uint4 (&C)[4], uint4 *D, int spacing)
{
unsigned int laneId = __laneId();
unsigned int lane8 = laneId%8;
unsigned int tile = laneId/8;
uint4 T1[8], T2[8];
/* Source matrix, A-H are threads, 0-7 are data items, thread A is marked with `*`:
*A0 B0 C0 D0 E0 F0 G0 H0
*A1 B1 C1 D1 E1 F1 G1 H1
*A2 B2 C2 D2 E2 F2 G2 H2
*A3 B3 C3 D3 E3 F3 G3 H3
*A4 B4 C4 D4 E4 F4 G4 H4
*A5 B5 C5 D5 E5 F5 G5 H5
*A6 B6 C6 D6 E6 F6 G6 H6
*A7 B7 C7 D7 E7 F7 G7 H7
*/
// rotate rows
T1[0] = B[0];
T1[1] = __shfl(B[1], lane8 + 7, 8);
T1[2] = __shfl(B[2], lane8 + 6, 8);
T1[3] = __shfl(B[3], lane8 + 5, 8);
T1[4] = __shfl(C[0], lane8 + 4, 8);
T1[5] = __shfl(C[1], lane8 + 3, 8);
T1[6] = __shfl(C[2], lane8 + 2, 8);
T1[7] = __shfl(C[3], lane8 + 1, 8);
/* Matrix after row rotates:
*A0 B0 C0 D0 E0 F0 G0 H0
H1 *A1 B1 C1 D1 E1 F1 G1
G2 H2 *A2 B2 C2 D2 E2 F2
F3 G3 H3 *A3 B3 C3 D3 E3
E4 F4 G4 H4 *A4 B4 C4 D4
D5 E5 F5 G5 H5 *A5 B5 C5
C6 D6 E6 F6 G6 H6 *A6 B6
B7 C7 D7 E7 F7 G7 H7 *A7
*/
// rotate columns up using a barrel shifter simulation
// column X is rotated up by (X+1) items
#pragma unroll 8
for(int n = 0; n < 8; n++) T2[n] = ((lane8+1) & 1) ? T1[(n+1) % 8] : T1[n];
#pragma unroll 8
for(int n = 0; n < 8; n++) T1[n] = ((lane8+1) & 2) ? T2[(n+2) % 8] : T2[n];
#pragma unroll 8
for(int n = 0; n < 8; n++) T2[n] = ((lane8+1) & 4) ? T1[(n+4) % 8] : T1[n];
/* Matrix after column rotates:
H1 H2 H3 H4 H5 H6 H7 H0
G2 G3 G4 G5 G6 G7 G0 G1
F3 F4 F5 F6 F7 F0 F1 F2
E4 E5 E6 E7 E0 E1 E2 E3
D5 D6 D7 D0 D1 D2 D3 D4
C6 C7 C0 C1 C2 C3 C4 C5
B7 B0 B1 B2 B3 B4 B5 B6
*A0 *A1 *A2 *A3 *A4 *A5 *A6 *A7
*/
// rotate rows again using address math and write to D, in reverse row order
D[spacing*2*(32*tile )+ lane8 ] = T2[7];
D[spacing*2*(32*tile+4 )+(lane8+7)%8] = T2[6];
D[spacing*2*(32*tile+8 )+(lane8+6)%8] = T2[5];
D[spacing*2*(32*tile+12)+(lane8+5)%8] = T2[4];
D[spacing*2*(32*tile+16)+(lane8+4)%8] = T2[3];
D[spacing*2*(32*tile+20)+(lane8+3)%8] = T2[2];
D[spacing*2*(32*tile+24)+(lane8+2)%8] = T2[1];
D[spacing*2*(32*tile+28)+(lane8+1)%8] = T2[0];
}
__device__ __forceinline__ void __transposed_read_BC(const uint4 *S, uint4 (&B)[4], uint4 (&C)[4], int spacing, int row)
{
unsigned int laneId = __laneId();
unsigned int lane8 = laneId%8;
unsigned int tile = laneId/8;
// Perform the same transposition as in __transposed_write_BC, but in reverse order.
// See the illustrations in comments for __transposed_write_BC.
// read and rotate rows, in reverse row order
uint4 T1[8], T2[8];
T1[7] = __ldg(&S[(spacing*2*(32*tile ) + lane8 + 8*__shfl(row, 0, 8))]);
T1[6] = __ldg(&S[(spacing*2*(32*tile+4 ) + (lane8+7)%8 + 8*__shfl(row, 1, 8))]);
T1[5] = __ldg(&S[(spacing*2*(32*tile+8 ) + (lane8+6)%8 + 8*__shfl(row, 2, 8))]);
T1[4] = __ldg(&S[(spacing*2*(32*tile+12) + (lane8+5)%8 + 8*__shfl(row, 3, 8))]);
T1[3] = __ldg(&S[(spacing*2*(32*tile+16) + (lane8+4)%8 + 8*__shfl(row, 4, 8))]);
T1[2] = __ldg(&S[(spacing*2*(32*tile+20) + (lane8+3)%8 + 8*__shfl(row, 5, 8))]);
T1[1] = __ldg(&S[(spacing*2*(32*tile+24) + (lane8+2)%8 + 8*__shfl(row, 6, 8))]);
T1[0] = __ldg(&S[(spacing*2*(32*tile+28) + (lane8+1)%8 + 8*__shfl(row, 7, 8))]);
// rotate columns down using a barrel shifter simulation
// column X is rotated down by (X+1) items, or up by (8-(X+1)) = (7-X) items
#pragma unroll 8
for(int n = 0; n < 8; n++) T2[n] = ((7-lane8) & 1) ? T1[(n+1) % 8] : T1[n];
#pragma unroll 8
for(int n = 0; n < 8; n++) T1[n] = ((7-lane8) & 2) ? T2[(n+2) % 8] : T2[n];
#pragma unroll 8
for(int n = 0; n < 8; n++) T2[n] = ((7-lane8) & 4) ? T1[(n+4) % 8] : T1[n];
// rotate rows
B[0] = T2[0];
B[1] = __shfl(T2[1], lane8 + 1, 8);
B[2] = __shfl(T2[2], lane8 + 2, 8);
B[3] = __shfl(T2[3], lane8 + 3, 8);
C[0] = __shfl(T2[4], lane8 + 4, 8);
C[1] = __shfl(T2[5], lane8 + 5, 8);
C[2] = __shfl(T2[6], lane8 + 6, 8);
C[3] = __shfl(T2[7], lane8 + 7, 8);
}
__device__ __forceinline__ void __transposed_xor_BC(const uint4 *S, uint4 (&B)[4], uint4 (&C)[4], int spacing, int row)
{
uint4 BT[4], CT[4];
__transposed_read_BC(S, BT, CT, spacing, row);
#pragma unroll 4
for(int n = 0; n < 4; n++)
{
B[n] ^= BT[n];
C[n] ^= CT[n];
}
}
#if __CUDA_ARCH__ < 350
// Kepler (Compute 3.0)
#define ROTL(a, b) ((a)<<(b))|((a)>>(32-(b)))
#else
// Kepler (Compute 3.5)
#define ROTL(a, b) __funnelshift_l( a, a, b );
#endif
#if 0
#define QUARTER(a,b,c,d) \
a += b; d ^= a; d = ROTL(d,16); \
c += d; b ^= c; b = ROTL(b,12); \
a += b; d ^= a; d = ROTL(d,8); \
c += d; b ^= c; b = ROTL(b,7);
static __device__ void xor_chacha8(uint4 *B, uint4 *C)
{
uint32_t x[16];
x[0]=(B[0].x ^= C[0].x);
x[1]=(B[0].y ^= C[0].y);
x[2]=(B[0].z ^= C[0].z);
x[3]=(B[0].w ^= C[0].w);
x[4]=(B[1].x ^= C[1].x);
x[5]=(B[1].y ^= C[1].y);
x[6]=(B[1].z ^= C[1].z);
x[7]=(B[1].w ^= C[1].w);
x[8]=(B[2].x ^= C[2].x);
x[9]=(B[2].y ^= C[2].y);
x[10]=(B[2].z ^= C[2].z);
x[11]=(B[2].w ^= C[2].w);
x[12]=(B[3].x ^= C[3].x);
x[13]=(B[3].y ^= C[3].y);
x[14]=(B[3].z ^= C[3].z);
x[15]=(B[3].w ^= C[3].w);
/* Operate on columns. */
QUARTER( x[0], x[4], x[ 8], x[12] )
QUARTER( x[1], x[5], x[ 9], x[13] )
QUARTER( x[2], x[6], x[10], x[14] )
QUARTER( x[3], x[7], x[11], x[15] )
/* Operate on diagonals */
QUARTER( x[0], x[5], x[10], x[15] )
QUARTER( x[1], x[6], x[11], x[12] )
QUARTER( x[2], x[7], x[ 8], x[13] )
QUARTER( x[3], x[4], x[ 9], x[14] )
/* Operate on columns. */
QUARTER( x[0], x[4], x[ 8], x[12] )
QUARTER( x[1], x[5], x[ 9], x[13] )
QUARTER( x[2], x[6], x[10], x[14] )
QUARTER( x[3], x[7], x[11], x[15] )
/* Operate on diagonals */
QUARTER( x[0], x[5], x[10], x[15] )
QUARTER( x[1], x[6], x[11], x[12] )
QUARTER( x[2], x[7], x[ 8], x[13] )
QUARTER( x[3], x[4], x[ 9], x[14] )
/* Operate on columns. */
QUARTER( x[0], x[4], x[ 8], x[12] )
QUARTER( x[1], x[5], x[ 9], x[13] )
QUARTER( x[2], x[6], x[10], x[14] )
QUARTER( x[3], x[7], x[11], x[15] )
/* Operate on diagonals */
QUARTER( x[0], x[5], x[10], x[15] )
QUARTER( x[1], x[6], x[11], x[12] )
QUARTER( x[2], x[7], x[ 8], x[13] )
QUARTER( x[3], x[4], x[ 9], x[14] )
/* Operate on columns. */
QUARTER( x[0], x[4], x[ 8], x[12] )
QUARTER( x[1], x[5], x[ 9], x[13] )
QUARTER( x[2], x[6], x[10], x[14] )
QUARTER( x[3], x[7], x[11], x[15] )
/* Operate on diagonals */
QUARTER( x[0], x[5], x[10], x[15] )
QUARTER( x[1], x[6], x[11], x[12] )
QUARTER( x[2], x[7], x[ 8], x[13] )
QUARTER( x[3], x[4], x[ 9], x[14] )
B[0].x += x[0]; B[0].y += x[1]; B[0].z += x[2]; B[0].w += x[3]; B[1].x += x[4]; B[1].y += x[5]; B[1].z += x[6]; B[1].w += x[7];
B[2].x += x[8]; B[2].y += x[9]; B[2].z += x[10]; B[2].w += x[11]; B[3].x += x[12]; B[3].y += x[13]; B[3].z += x[14]; B[3].w += x[15];
}
#else
#define ADD4(d1,d2,d3,d4,s1,s2,s3,s4) \
d1 += s1; d2 += s2; d3 += s3; d4 += s4;
#define XOR4(d1,d2,d3,d4,s1,s2,s3,s4) \
d1 ^= s1; d2 ^= s2; d3 ^= s3; d4 ^= s4;
#define ROTL4(d1,d2,d3,d4,amt) \
d1 = ROTL(d1, amt); d2 = ROTL(d2, amt); d3 = ROTL(d3, amt); d4 = ROTL(d4, amt);
#define QROUND(a1,a2,a3,a4, b1,b2,b3,b4, c1,c2,c3,c4, amt) \
ADD4 (a1,a2,a3,a4, c1,c2,c3,c4) \
XOR4 (b1,b2,b3,b4, a1,a2,a3,a4) \
ROTL4(b1,b2,b3,b4, amt)
static __device__ void xor_chacha8(uint4 *B, uint4 *C)
{
uint32_t x[16];
x[0]=(B[0].x ^= C[0].x);
x[1]=(B[0].y ^= C[0].y);
x[2]=(B[0].z ^= C[0].z);
x[3]=(B[0].w ^= C[0].w);
x[4]=(B[1].x ^= C[1].x);
x[5]=(B[1].y ^= C[1].y);
x[6]=(B[1].z ^= C[1].z);
x[7]=(B[1].w ^= C[1].w);
x[8]=(B[2].x ^= C[2].x);
x[9]=(B[2].y ^= C[2].y);
x[10]=(B[2].z ^= C[2].z);
x[11]=(B[2].w ^= C[2].w);
x[12]=(B[3].x ^= C[3].x);
x[13]=(B[3].y ^= C[3].y);
x[14]=(B[3].z ^= C[3].z);
x[15]=(B[3].w ^= C[3].w);
/* Operate on columns. */
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 16);
QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 12);
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 8);
QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 7);
/* Operate on diagonals */
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 16);
QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 12);
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 8);
QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 7);
/* Operate on columns. */
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 16);
QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 12);
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 8);
QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 7);
/* Operate on diagonals */
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 16);
QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 12);
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 8);
QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 7);
/* Operate on columns. */
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 16);
QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 12);
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 8);
QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 7);
/* Operate on diagonals */
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 16);
QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 12);
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 8);
QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 7);
/* Operate on columns. */
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 16);
QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 12);
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 8);
QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 7);
/* Operate on diagonals */
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 16);
QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 12);
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 8);
QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 7);
B[0].x += x[0]; B[0].y += x[1]; B[0].z += x[2]; B[0].w += x[3]; B[1].x += x[4]; B[1].y += x[5]; B[1].z += x[6]; B[1].w += x[7];
B[2].x += x[8]; B[2].y += x[9]; B[2].z += x[10]; B[2].w += x[11]; B[3].x += x[12]; B[3].y += x[13]; B[3].z += x[14]; B[3].w += x[15];
}
#endif
#define ROTL7(a0,a1,a2,a3,a00,a10,a20,a30){\
a0^=ROTL(a00, 7); a1^=ROTL(a10, 7); a2^=ROTL(a20, 7); a3^=ROTL(a30, 7);\
};\
#define ROTL9(a0,a1,a2,a3,a00,a10,a20,a30){\
a0^=ROTL(a00, 9); a1^=ROTL(a10, 9); a2^=ROTL(a20, 9); a3^=ROTL(a30, 9);\
};\
#define ROTL13(a0,a1,a2,a3,a00,a10,a20,a30){\
a0^=ROTL(a00, 13); a1^=ROTL(a10, 13); a2^=ROTL(a20, 13); a3^=ROTL(a30, 13);\
};\
#define ROTL18(a0,a1,a2,a3,a00,a10,a20,a30){\
a0^=ROTL(a00, 18); a1^=ROTL(a10, 18); a2^=ROTL(a20, 18); a3^=ROTL(a30, 18);\
};\
static __device__ void xor_salsa8(uint4 *B, uint4 *C)
{
uint32_t x[16];
x[0]=(B[0].x ^= C[0].x);
x[1]=(B[0].y ^= C[0].y);
x[2]=(B[0].z ^= C[0].z);
x[3]=(B[0].w ^= C[0].w);
x[4]=(B[1].x ^= C[1].x);
x[5]=(B[1].y ^= C[1].y);
x[6]=(B[1].z ^= C[1].z);
x[7]=(B[1].w ^= C[1].w);
x[8]=(B[2].x ^= C[2].x);
x[9]=(B[2].y ^= C[2].y);
x[10]=(B[2].z ^= C[2].z);
x[11]=(B[2].w ^= C[2].w);
x[12]=(B[3].x ^= C[3].x);
x[13]=(B[3].y ^= C[3].y);
x[14]=(B[3].z ^= C[3].z);
x[15]=(B[3].w ^= C[3].w);
/* Operate on columns. */
ROTL7(x[4],x[9],x[14],x[3],x[0]+x[12],x[1]+x[5],x[6]+x[10],x[11]+x[15]);
ROTL9(x[8],x[13],x[2],x[7],x[0]+x[4],x[5]+x[9],x[10]+x[14],x[3]+x[15]);
ROTL13(x[12],x[1],x[6],x[11],x[4]+x[8],x[9]+x[13],x[2]+x[14],x[3]+x[7]);
ROTL18(x[0],x[5],x[10],x[15],x[8]+x[12],x[1]+x[13],x[2]+x[6],x[7]+x[11]);
/* Operate on rows. */
ROTL7(x[1],x[6],x[11],x[12],x[0]+x[3],x[4]+x[5],x[9]+x[10],x[14]+x[15]);
ROTL9(x[2],x[7],x[8],x[13],x[0]+x[1],x[5]+x[6],x[10]+x[11],x[12]+x[15]);
ROTL13(x[3],x[4],x[9],x[14],x[1]+x[2],x[6]+x[7],x[8]+x[11],x[12]+x[13]);
ROTL18(x[0],x[5],x[10],x[15],x[2]+x[3],x[4]+x[7],x[8]+x[9],x[13]+x[14]);
/* Operate on columns. */
ROTL7(x[4],x[9],x[14],x[3],x[0]+x[12],x[1]+x[5],x[6]+x[10],x[11]+x[15]);
ROTL9(x[8],x[13],x[2],x[7],x[0]+x[4],x[5]+x[9],x[10]+x[14],x[3]+x[15]);
ROTL13(x[12],x[1],x[6],x[11],x[4]+x[8],x[9]+x[13],x[2]+x[14],x[3]+x[7]);
ROTL18(x[0],x[5],x[10],x[15],x[8]+x[12],x[1]+x[13],x[2]+x[6],x[7]+x[11]);
/* Operate on rows. */
ROTL7(x[1],x[6],x[11],x[12],x[0]+x[3],x[4]+x[5],x[9]+x[10],x[14]+x[15]);
ROTL9(x[2],x[7],x[8],x[13],x[0]+x[1],x[5]+x[6],x[10]+x[11],x[12]+x[15]);
ROTL13(x[3],x[4],x[9],x[14],x[1]+x[2],x[6]+x[7],x[8]+x[11],x[12]+x[13]);
ROTL18(x[0],x[5],x[10],x[15],x[2]+x[3],x[4]+x[7],x[8]+x[9],x[13]+x[14]);
/* Operate on columns. */
ROTL7(x[4],x[9],x[14],x[3],x[0]+x[12],x[1]+x[5],x[6]+x[10],x[11]+x[15]);
ROTL9(x[8],x[13],x[2],x[7],x[0]+x[4],x[5]+x[9],x[10]+x[14],x[3]+x[15]);
ROTL13(x[12],x[1],x[6],x[11],x[4]+x[8],x[9]+x[13],x[2]+x[14],x[3]+x[7]);
ROTL18(x[0],x[5],x[10],x[15],x[8]+x[12],x[1]+x[13],x[2]+x[6],x[7]+x[11]);
/* Operate on rows. */
ROTL7(x[1],x[6],x[11],x[12],x[0]+x[3],x[4]+x[5],x[9]+x[10],x[14]+x[15]);
ROTL9(x[2],x[7],x[8],x[13],x[0]+x[1],x[5]+x[6],x[10]+x[11],x[12]+x[15]);
ROTL13(x[3],x[4],x[9],x[14],x[1]+x[2],x[6]+x[7],x[8]+x[11],x[12]+x[13]);
ROTL18(x[0],x[5],x[10],x[15],x[2]+x[3],x[4]+x[7],x[8]+x[9],x[13]+x[14]);
/* Operate on columns. */
ROTL7(x[4],x[9],x[14],x[3],x[0]+x[12],x[1]+x[5],x[6]+x[10],x[11]+x[15]);
ROTL9(x[8],x[13],x[2],x[7],x[0]+x[4],x[5]+x[9],x[10]+x[14],x[3]+x[15]);
ROTL13(x[12],x[1],x[6],x[11],x[4]+x[8],x[9]+x[13],x[2]+x[14],x[3]+x[7]);
ROTL18(x[0],x[5],x[10],x[15],x[8]+x[12],x[1]+x[13],x[2]+x[6],x[7]+x[11]);
/* Operate on rows. */
ROTL7(x[1],x[6],x[11],x[12],x[0]+x[3],x[4]+x[5],x[9]+x[10],x[14]+x[15]);
ROTL9(x[2],x[7],x[8],x[13],x[0]+x[1],x[5]+x[6],x[10]+x[11],x[12]+x[15]);
ROTL13(x[3],x[4],x[9],x[14],x[1]+x[2],x[6]+x[7],x[8]+x[11],x[12]+x[13]);
ROTL18(x[0],x[5],x[10],x[15],x[2]+x[3],x[4]+x[7],x[8]+x[9],x[13]+x[14]);
B[0].x += x[0]; B[0].y += x[1]; B[0].z += x[2]; B[0].w += x[3]; B[1].x += x[4]; B[1].y += x[5]; B[1].z += x[6]; B[1].w += x[7];
B[2].x += x[8]; B[2].y += x[9]; B[2].z += x[10]; B[2].w += x[11]; B[3].x += x[12]; B[3].y += x[13]; B[3].z += x[14]; B[3].w += x[15];
}
template <int ALGO> static __device__ void block_mixer(uint4 *B, uint4 *C)
{
switch (ALGO)
{
case ALGO_SCRYPT: xor_salsa8(B, C); break;
case ALGO_SCRYPT_JANE: xor_chacha8(B, C); break;
}
}
////////////////////////////////////////////////////////////////////////////////
//! Experimental Scrypt core kernel for Titan devices.
//! @param g_idata input data in global memory
//! @param g_odata output data in global memory
////////////////////////////////////////////////////////////////////////////////
template <int ALGO> __global__ void nv2_scrypt_core_kernelA(uint32_t *g_idata, int begin, int end)
{
int offset = blockIdx.x * blockDim.x + threadIdx.x / warpSize * warpSize;
g_idata += 32 * offset;
uint32_t * V = c_V[offset / warpSize];
uint4 B[4], C[4];
int i = begin;
if(i == 0) {
__transposed_read_BC((uint4*)g_idata, B, C, 1, 0);
__transposed_write_BC(B, C, (uint4*)V, c_N);
++i;
} else
__transposed_read_BC((uint4*)(V + (i-1)*32), B, C, c_N, 0);
while(i < end) {
block_mixer<ALGO>(B, C); block_mixer<ALGO>(C, B);
__transposed_write_BC(B, C, (uint4*)(V + i*32), c_N);
++i;
}
}
template <int ALGO> __global__ void nv2_scrypt_core_kernelA_LG(uint32_t *g_idata, int begin, int end, unsigned int LOOKUP_GAP)
{
int offset = blockIdx.x * blockDim.x + threadIdx.x / warpSize * warpSize;
g_idata += 32 * offset;
uint32_t * V = c_V[offset / warpSize];
uint4 B[4], C[4];
int i = begin;
if(i == 0) {
__transposed_read_BC((uint4*)g_idata, B, C, 1, 0);
__transposed_write_BC(B, C, (uint4*)V, c_spacing);
++i;
} else {
int pos = (i-1)/LOOKUP_GAP, loop = (i-1)-pos*LOOKUP_GAP;
__transposed_read_BC((uint4*)(V + pos*32), B, C, c_spacing, 0);
while(loop--) { block_mixer<ALGO>(B, C); block_mixer<ALGO>(C, B); }
}
while(i < end) {
block_mixer<ALGO>(B, C); block_mixer<ALGO>(C, B);
if (i % LOOKUP_GAP == 0)
__transposed_write_BC(B, C, (uint4*)(V + (i/LOOKUP_GAP)*32), c_spacing);
++i;
}
}
template <int ALGO> __global__ void nv2_scrypt_core_kernelB(uint32_t *g_odata, int begin, int end)
{
int offset = blockIdx.x * blockDim.x + threadIdx.x / warpSize * warpSize;
g_odata += 32 * offset;
uint32_t * V = c_V[offset / warpSize];
uint4 B[4], C[4];
if(begin == 0) {
__transposed_read_BC((uint4*)V, B, C, c_N, c_N_1);
block_mixer<ALGO>(B, C); block_mixer<ALGO>(C, B);
} else
__transposed_read_BC((uint4*)g_odata, B, C, 1, 0);
for (int i = begin; i < end; i++) {
int slot = C[0].x & c_N_1;
__transposed_xor_BC((uint4*)(V), B, C, c_N, slot);
block_mixer<ALGO>(B, C); block_mixer<ALGO>(C, B);
}
__transposed_write_BC(B, C, (uint4*)(g_odata), 1);
}
template <int ALGO> __global__ void nv2_scrypt_core_kernelB_LG(uint32_t *g_odata, int begin, int end, unsigned int LOOKUP_GAP)
{
int offset = blockIdx.x * blockDim.x + threadIdx.x / warpSize * warpSize;
g_odata += 32 * offset;
uint32_t * V = c_V[offset / warpSize];
uint4 B[4], C[4];
if(begin == 0) {
int pos = c_N_1/LOOKUP_GAP, loop = 1 + (c_N_1-pos*LOOKUP_GAP);
__transposed_read_BC((uint4*)V, B, C, c_spacing, pos);
while(loop--) { block_mixer<ALGO>(B, C); block_mixer<ALGO>(C, B); }
} else {
__transposed_read_BC((uint4*)g_odata, B, C, 1, 0);
}
for (int i = begin; i < end; i++) {
int slot = C[0].x & c_N_1;
int pos = slot/LOOKUP_GAP, loop = slot-pos*LOOKUP_GAP;
uint4 b[4], c[4]; __transposed_read_BC((uint4*)(V), b, c, c_spacing, pos);
while(loop--) { block_mixer<ALGO>(b, c); block_mixer<ALGO>(c, b); }
#pragma unroll 4
for(int n = 0; n < 4; n++) { B[n] ^= b[n]; C[n] ^= c[n]; }
block_mixer<ALGO>(B, C); block_mixer<ALGO>(C, B);
}
__transposed_write_BC(B, C, (uint4*)(g_odata), 1);
}
//
// Maxcoin related Keccak implementation (Keccak256)
//
// from salsa_kernel.cu
extern std::map<int, int> context_blocks;
extern std::map<int, int> context_wpb;
extern std::map<int, KernelInterface *> context_kernel;
extern std::map<int, cudaStream_t> context_streams[2];
extern std::map<int, uint32_t *> context_hash[2];
__constant__ uint64_t ptarget64[4];
#define ROL(a, offset) ((((uint64_t)a) << ((offset) % 64)) ^ (((uint64_t)a) >> (64-((offset) % 64))))
#define ROL_mult8(a, offset) ROL(a, offset)
__constant__ uint64_t KeccakF_RoundConstants[24];
static uint64_t host_KeccakF_RoundConstants[24] =
{
(uint64_t)0x0000000000000001ULL,
(uint64_t)0x0000000000008082ULL,
(uint64_t)0x800000000000808aULL,
(uint64_t)0x8000000080008000ULL,
(uint64_t)0x000000000000808bULL,
(uint64_t)0x0000000080000001ULL,
(uint64_t)0x8000000080008081ULL,
(uint64_t)0x8000000000008009ULL,
(uint64_t)0x000000000000008aULL,
(uint64_t)0x0000000000000088ULL,
(uint64_t)0x0000000080008009ULL,
(uint64_t)0x000000008000000aULL,
(uint64_t)0x000000008000808bULL,
(uint64_t)0x800000000000008bULL,
(uint64_t)0x8000000000008089ULL,
(uint64_t)0x8000000000008003ULL,
(uint64_t)0x8000000000008002ULL,
(uint64_t)0x8000000000000080ULL,
(uint64_t)0x000000000000800aULL,
(uint64_t)0x800000008000000aULL,
(uint64_t)0x8000000080008081ULL,
(uint64_t)0x8000000000008080ULL,
(uint64_t)0x0000000080000001ULL,
(uint64_t)0x8000000080008008ULL
};
__constant__ uint64_t pdata64[10];
static __device__ uint32_t cuda_swab32(uint32_t x)
{
return (((x << 24) & 0xff000000u) | ((x << 8) & 0x00ff0000u)
| ((x >> 8) & 0x0000ff00u) | ((x >> 24) & 0x000000ffu));
}
__global__ void titan_crypto_hash( uint64_t *g_out, uint32_t nonce, uint32_t *g_good, bool validate )
{
uint64_t Aba, Abe, Abi, Abo, Abu;
uint64_t Aga, Age, Agi, Ago, Agu;
uint64_t Aka, Ake, Aki, Ako, Aku;
uint64_t Ama, Ame, Ami, Amo, Amu;
uint64_t Asa, Ase, Asi, Aso, Asu;
uint64_t BCa, BCe, BCi, BCo, BCu;
uint64_t Da, De, Di, Do, Du;
uint64_t Eba, Ebe, Ebi, Ebo, Ebu;
uint64_t Ega, Ege, Egi, Ego, Egu;
uint64_t Eka, Eke, Eki, Eko, Eku;
uint64_t Ema, Eme, Emi, Emo, Emu;
uint64_t Esa, Ese, Esi, Eso, Esu;
//copyFromState(A, state)
Aba = pdata64[0];
Abe = pdata64[1];
Abi = pdata64[2];
Abo = pdata64[3];
Abu = pdata64[4];
Aga = pdata64[5];
Age = pdata64[6];
Agi = pdata64[7];
Ago = pdata64[8];
Agu = (pdata64[9] & 0x00000000FFFFFFFFULL) | (((uint64_t)cuda_swab32(nonce + ((blockIdx.x * blockDim.x) + threadIdx.x))) << 32);
Aka = 0x0000000000000001ULL;
Ake = 0;
Aki = 0;
Ako = 0;
Aku = 0;
Ama = 0;
Ame = 0x8000000000000000ULL;
Ami = 0;
Amo = 0;
Amu = 0;
Asa = 0;
Ase = 0;
Asi = 0;
Aso = 0;
Asu = 0;
#pragma unroll 12
for( int laneCount = 0; laneCount < 24; laneCount += 2 )
{
// prepareTheta
BCa = Aba^Aga^Aka^Ama^Asa;
BCe = Abe^Age^Ake^Ame^Ase;
BCi = Abi^Agi^Aki^Ami^Asi;
BCo = Abo^Ago^Ako^Amo^Aso;
BCu = Abu^Agu^Aku^Amu^Asu;
//thetaRhoPiChiIotaPrepareTheta(round , A, E)
Da = BCu^ROL(BCe, 1);
De = BCa^ROL(BCi, 1);
Di = BCe^ROL(BCo, 1);
Do = BCi^ROL(BCu, 1);
Du = BCo^ROL(BCa, 1);
Aba ^= Da;
BCa = Aba;
Age ^= De;
BCe = ROL(Age, 44);
Aki ^= Di;
BCi = ROL(Aki, 43);
Amo ^= Do;
BCo = ROL(Amo, 21);
Asu ^= Du;
BCu = ROL(Asu, 14);
Eba = BCa ^((~BCe)& BCi );
Eba ^= (uint64_t)KeccakF_RoundConstants[laneCount];
Ebe = BCe ^((~BCi)& BCo );
Ebi = BCi ^((~BCo)& BCu );
Ebo = BCo ^((~BCu)& BCa );
Ebu = BCu ^((~BCa)& BCe );
Abo ^= Do;
BCa = ROL(Abo, 28);
Agu ^= Du;
BCe = ROL(Agu, 20);
Aka ^= Da;
BCi = ROL(Aka, 3);
Ame ^= De;
BCo = ROL(Ame, 45);
Asi ^= Di;
BCu = ROL(Asi, 61);
Ega = BCa ^((~BCe)& BCi );
Ege = BCe ^((~BCi)& BCo );
Egi = BCi ^((~BCo)& BCu );
Ego = BCo ^((~BCu)& BCa );
Egu = BCu ^((~BCa)& BCe );
Abe ^= De;
BCa = ROL(Abe, 1);
Agi ^= Di;
BCe = ROL(Agi, 6);
Ako ^= Do;
BCi = ROL(Ako, 25);
Amu ^= Du;
BCo = ROL_mult8(Amu, 8);
Asa ^= Da;
BCu = ROL(Asa, 18);
Eka = BCa ^((~BCe)& BCi );
Eke = BCe ^((~BCi)& BCo );
Eki = BCi ^((~BCo)& BCu );
Eko = BCo ^((~BCu)& BCa );
Eku = BCu ^((~BCa)& BCe );
Abu ^= Du;
BCa = ROL(Abu, 27);
Aga ^= Da;
BCe = ROL(Aga, 36);
Ake ^= De;
BCi = ROL(Ake, 10);
Ami ^= Di;
BCo = ROL(Ami, 15);
Aso ^= Do;
BCu = ROL_mult8(Aso, 56);
Ema = BCa ^((~BCe)& BCi );
Eme = BCe ^((~BCi)& BCo );
Emi = BCi ^((~BCo)& BCu );
Emo = BCo ^((~BCu)& BCa );
Emu = BCu ^((~BCa)& BCe );
Abi ^= Di;
BCa = ROL(Abi, 62);
Ago ^= Do;
BCe = ROL(Ago, 55);
Aku ^= Du;
BCi = ROL(Aku, 39);
Ama ^= Da;
BCo = ROL(Ama, 41);
Ase ^= De;
BCu = ROL(Ase, 2);
Esa = BCa ^((~BCe)& BCi );
Ese = BCe ^((~BCi)& BCo );
Esi = BCi ^((~BCo)& BCu );
Eso = BCo ^((~BCu)& BCa );
Esu = BCu ^((~BCa)& BCe );
// prepareTheta
BCa = Eba^Ega^Eka^Ema^Esa;
BCe = Ebe^Ege^Eke^Eme^Ese;
BCi = Ebi^Egi^Eki^Emi^Esi;
BCo = Ebo^Ego^Eko^Emo^Eso;
BCu = Ebu^Egu^Eku^Emu^Esu;
//thetaRhoPiChiIotaPrepareTheta(round+1, E, A)
Da = BCu^ROL(BCe, 1);
De = BCa^ROL(BCi, 1);
Di = BCe^ROL(BCo, 1);
Do = BCi^ROL(BCu, 1);
Du = BCo^ROL(BCa, 1);
Eba ^= Da;
BCa = Eba;
Ege ^= De;
BCe = ROL(Ege, 44);
Eki ^= Di;
BCi = ROL(Eki, 43);
Emo ^= Do;
BCo = ROL(Emo, 21);
Esu ^= Du;
BCu = ROL(Esu, 14);
Aba = BCa ^((~BCe)& BCi );
Aba ^= (uint64_t)KeccakF_RoundConstants[laneCount+1];
Abe = BCe ^((~BCi)& BCo );
Abi = BCi ^((~BCo)& BCu );
Abo = BCo ^((~BCu)& BCa );
Abu = BCu ^((~BCa)& BCe );
Ebo ^= Do;
BCa = ROL(Ebo, 28);
Egu ^= Du;
BCe = ROL(Egu, 20);
Eka ^= Da;
BCi = ROL(Eka, 3);
Eme ^= De;
BCo = ROL(Eme, 45);
Esi ^= Di;
BCu = ROL(Esi, 61);
Aga = BCa ^((~BCe)& BCi );
Age = BCe ^((~BCi)& BCo );
Agi = BCi ^((~BCo)& BCu );
Ago = BCo ^((~BCu)& BCa );
Agu = BCu ^((~BCa)& BCe );
Ebe ^= De;
BCa = ROL(Ebe, 1);
Egi ^= Di;
BCe = ROL(Egi, 6);
Eko ^= Do;
BCi = ROL(Eko, 25);
Emu ^= Du;
BCo = ROL_mult8(Emu, 8);
Esa ^= Da;
BCu = ROL(Esa, 18);
Aka = BCa ^((~BCe)& BCi );
Ake = BCe ^((~BCi)& BCo );
Aki = BCi ^((~BCo)& BCu );
Ako = BCo ^((~BCu)& BCa );
Aku = BCu ^((~BCa)& BCe );
Ebu ^= Du;
BCa = ROL(Ebu, 27);
Ega ^= Da;
BCe = ROL(Ega, 36);
Eke ^= De;
BCi = ROL(Eke, 10);
Emi ^= Di;
BCo = ROL(Emi, 15);
Eso ^= Do;
BCu = ROL_mult8(Eso, 56);
Ama = BCa ^((~BCe)& BCi );
Ame = BCe ^((~BCi)& BCo );
Ami = BCi ^((~BCo)& BCu );
Amo = BCo ^((~BCu)& BCa );
Amu = BCu ^((~BCa)& BCe );
Ebi ^= Di;
BCa = ROL(Ebi, 62);
Ego ^= Do;
BCe = ROL(Ego, 55);
Eku ^= Du;
BCi = ROL(Eku, 39);
Ema ^= Da;
BCo = ROL(Ema, 41);
Ese ^= De;
BCu = ROL(Ese, 2);
Asa = BCa ^((~BCe)& BCi );
Ase = BCe ^((~BCi)& BCo );
Asi = BCi ^((~BCo)& BCu );
Aso = BCo ^((~BCu)& BCa );
Asu = BCu ^((~BCa)& BCe );
}
if (validate) {
g_out += 4 * ((blockIdx.x * blockDim.x) + threadIdx.x);
g_out[3] = Abo;
g_out[2] = Abi;
g_out[1] = Abe;
g_out[0] = Aba;
}
// the likelyhood of meeting the hashing target is so low, that we're not guarding this
// with atomic writes, locks or similar...
uint64_t *g_good64 = (uint64_t*)g_good;
if (Abo <= ptarget64[3]) {
if (Abo < g_good64[3]) {
g_good64[3] = Abo;
g_good64[2] = Abi;
g_good64[1] = Abe;
g_good64[0] = Aba;
g_good[8] = nonce + ((blockIdx.x * blockDim.x) + threadIdx.x);
}
}
}
static std::map<int, uint32_t *> context_good[2];
void NV2Kernel::prepare_keccak256(int thr_id, const uint32_t host_pdata[20], const uint32_t host_ptarget[8])
{
static bool init[8] = {false, false, false, false, false, false, false, false};
if (!init[thr_id])
{
cudaMemcpyToSymbol(KeccakF_RoundConstants, host_KeccakF_RoundConstants, sizeof(host_KeccakF_RoundConstants), 0, cudaMemcpyHostToDevice);
// allocate pinned host memory for good hashes
uint32_t *tmp;
checkCudaErrors(cudaMalloc((void **) &tmp, 9*sizeof(uint32_t))); context_good[0][thr_id] = tmp;
checkCudaErrors(cudaMalloc((void **) &tmp, 9*sizeof(uint32_t))); context_good[1][thr_id] = tmp;
init[thr_id] = true;
}
cudaMemcpyToSymbol(pdata64, host_pdata, 20*sizeof(uint32_t), 0, cudaMemcpyHostToDevice);
cudaMemcpyToSymbol(ptarget64, host_ptarget, 8*sizeof(uint32_t), 0, cudaMemcpyHostToDevice);
}
uint32_t NV2Kernel::do_keccak256(int thr_id, int stream, uint32_t *hash, uint32_t nonce, int throughput, bool do_d2h)
{