forked from uds-psl/coq-library-undecidability
-
Notifications
You must be signed in to change notification settings - Fork 3
/
HSC.v
59 lines (47 loc) · 2.01 KB
/
HSC.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
(*
Autor(s):
Andrej Dudenhefner (1)
Affiliation(s):
(1) Saarland University, Saarbrücken, Germany
*)
(*
Problem(s):
Provability in Hilbert-style calculi (HSC_PRV)
Recognizing axiomatizations of Hilbert-style calculi (HSC_AX)
HSC_PRV:
Fix a list s₁,...,sₙ of formulae.
Given a formula s, is [s₁,...,sₙ] ⊢ s derivable?
HSC_AX:
Given a list s₁,...,sₙ of formulae such that
[a → b → a] ⊢ sᵢ is derivable for i = 1...n,
is [s₁,...,sₙ] ⊢ a → b → a derivable?
References:
[1] Grigoriy V. Bokov: Undecidable problems for propositional calculi with implication.
Logic Journal of the IGPL, 24(5):792–806, 2016. doi:10.1093/jigpal/jzw013
[2] Andrej Dudenhefner, Jakob Rehof: Lower End of the Linial-Post Spectrum.
TYPES 2017: 2:1-2:15. doi: 10.4230/LIPIcs.TYPES.2017.2
*)
Require Import List.
Import ListNotations.
(* propositional formulae s, t ::= a | s → t *)
Inductive formula : Set :=
| var : nat -> formula
| arr : formula -> formula -> formula.
(* substitute ζ t replaces each variable n in t by ζ n *)
Fixpoint substitute (ζ: nat -> formula) (t: formula) : formula :=
match t with
| var n => ζ n
| arr s t => arr (substitute ζ s) (substitute ζ t)
end.
(* Hilbert-style calculus *)
Inductive hsc (Gamma: list formula) : formula -> Prop :=
| hsc_var : forall (ζ: nat -> formula) (t: formula), In t Gamma -> hsc Gamma (substitute ζ t)
| hsc_arr : forall (s t : formula), hsc Gamma (arr s t) -> hsc Gamma s -> hsc Gamma t.
(* is the formula s derivable from the fixed list of formulae Gamma? *)
Definition HSC_PRV (Gamma: list formula) (s: formula) := hsc Gamma s.
(* the formula a → b → a *)
Definition a_b_a : formula := arr (var 0) (arr (var 1) (var 0)).
(* list of formulae derivable from a → b → a *)
Definition HSC_AX_PROBLEM := { Gamma: list formula | forall s, In s Gamma -> hsc [a_b_a] s}.
(* is the formula a → b → a derivable? *)
Definition HSC_AX (l: HSC_AX_PROBLEM) := hsc (proj1_sig l) a_b_a.