-
Notifications
You must be signed in to change notification settings - Fork 89
/
Copy pathsampling.py
40 lines (35 loc) · 1.48 KB
/
sampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import pandas as pd
def non_negative_series(series):
series = series.copy(deep=True)
series['Returns'] = series['Close'].diff() / series['Close'].shift(1)
series['rPrices'] = (1 + series['Returns']).cumprod()
return series
def daily_bars(series):
series = series.copy(deep=True)
return group_bars(series, series.index.date)
def volume_bars(series, bar_size=10000):
series = series.copy(deep=True)
series['Cum Volume'] = series['Volume'].cumsum()
bar_idx = (series['Cum Volume'] / bar_size).round(0).astype(int).values
return group_bars(series, bar_idx)
def dollar_bars(series, bar_size=10000 * 3000):
series = series.copy(deep=True)
series['Dollar Volume'] = (series['Volume'] * series['Close'])
series['Cum Dollar Volume'] = series['Dollar Volume'].cumsum()
bar_idx = (series['Cum Dollar Volume'] / bar_size).round(0).astype(int).values
return group_bars(series, bar_idx)
def group_bars(series, bar_idx):
gg = series.groupby(bar_idx)
df = pd.DataFrame()
df['Volume'] = gg['Volume'].sum()
if 'Dollar Volume' in series.columns:
df['Dollar Volume'] = gg['Dollar Volume'].sum()
df['Open'] = gg['Open'].first()
df['Close'] = gg['Close'].last()
if 'rPrices' in series.columns:
df['rPrices'] = gg['rPrices'].last()
df['Instrument'] = gg['Instrument'].first()
df['Time'] = gg.apply(lambda x:x.index[0])
df['Num Ticks'] = gg.size()
df = df.set_index(gg.apply(lambda x:x.index[0]))
return df