-
Notifications
You must be signed in to change notification settings - Fork 0
/
custom_callbacks.py
31 lines (25 loc) · 1.2 KB
/
custom_callbacks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import os
import pytorch_lightning as pl
import logging
logging.basicConfig(format="%(asctime)s:%(module)s:%(message)s", level=logging.INFO)
logger = logging.getLogger(__name__)
class CheckpointEveryNEpochs(pl.Callback):
"""
Save a checkpoint every N epochs, instead of Lightning's default that checkpoints
based on validation loss.
"""
def __init__(self, save_epoch_frequency: int, skip_first: bool = True):
self.save_epoch_frequency = save_epoch_frequency
self.skip_first = skip_first
def on_validation_epoch_end(self, trainer, pl_module):
""" Check if we should save a checkpoint after every train batch """
epoch = trainer.current_epoch
if epoch == 0 and self.skip_first:
return
# global_step = trainer.global_step
if (epoch + 1) % self.save_epoch_frequency == 0:
logger.info(f"Dumping checkpoint at epoch {epoch}")
metrics = trainer.logged_metrics
filename = f"PL-epoch={epoch}-val_loss={metrics['val_loss']:.3f}-val_reg_loss={metrics['val_reg_loss']:.3f}.ckpt"
ckpt_path = os.path.join(trainer.checkpoint_callback.dirpath, filename)
trainer.save_checkpoint(ckpt_path)