Skip to content

Commit

Permalink
added cnn
Browse files Browse the repository at this point in the history
  • Loading branch information
dmohorcic committed Nov 19, 2021
1 parent 6a0d962 commit e4709ab
Show file tree
Hide file tree
Showing 120 changed files with 15 additions and 1 deletion.
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@

In this thesis we explore the problem of automatic music transcription using deep neural networks, more specific convolutional neural networks. Automatic music transcription is a task of writing the sheet music from musical recordings. We analysed previous studies and found that there was a lack of research about the size and the shape of architecture of deep models. We explored the performance of four different architectures of convolutional neural networks on the piano recordings dataset MAPS, which is a common benchmark for learning automatic music transcription. We also compared two different normalization techniques for spectrograms: standardization and the logarithmic compression. We found out that the performance of transcription is highly correlated with the higher number of convolutional layers. Transcription is also 10% more successful with logarithmic compression instead of standardization.

The thesis is in file [Avtomatska transkripcija klavirske glasbe s konvolucijskimi nevronskimi mrežami](Avtomatska transkripcija klavirske glasbe s konvolucijskimi nevronskimi mrežami.pdf). The presentation for the thesis defense is in file [zagovor](zagovor.pptx).
The thesis is in file [Avtomatska transkripcija klavirske glasbe s konvolucijskimi nevronskimi mrežami](Avtomatska%20transkripcija%20klavirske%20glasbe%20s%20konvolucijskimi%20nevronskimi%20mrežami.pdf). The presentation for the thesis defense is in file [zagovor](zagovor.pptx).

## About this repository

Expand Down
2 changes: 2 additions & 0 deletions cnnModels/checkpoint
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
model_checkpoint_path: "5_conv16_24_3mp2_1flat_den88"
all_model_checkpoint_paths: "5_conv16_24_3mp2_1flat_den88"
Binary file added cnnModels/m5_test_tt/saved_model.pb
Binary file not shown.
Binary file not shown.
Binary file added cnnModels/m5_test_tt/variables/variables.index
Binary file not shown.
Binary file added cnnModels/model1/saved_model.pb
Binary file not shown.
Binary file not shown.
Binary file added cnnModels/model1/variables/variables.index
Binary file not shown.
Binary file added cnnModels/model1337/saved_model.pb
Binary file not shown.
Binary file not shown.
Binary file added cnnModels/model1337/variables/variables.index
Binary file not shown.
1 change: 1 addition & 0 deletions cnnModels/model1337_history
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
{"loss": [0.0736289918422699, 0.057361409068107605, 0.05343720316886902, 0.05133333057165146, 0.04985713213682175, 0.048968683928251266, 0.04826045036315918, 0.04755463823676109, 0.047009821981191635, 0.04669559374451637, 0.04637901857495308, 0.04613190516829491, 0.046017684042453766, 0.045583296567201614, 0.04536934942007065, 0.045280467718839645, 0.04508363455533981, 0.044831231236457825, 0.04467761516571045, 0.044529568403959274], "precision": [0.7897850275039673, 0.8255372643470764, 0.8362380862236023, 0.8416039943695068, 0.8454567790031433, 0.8476539254188538, 0.8497282862663269, 0.851420521736145, 0.8530411720275879, 0.8538715839385986, 0.8546628952026367, 0.8554665446281433, 0.8555996417999268, 0.8568801283836365, 0.8574506640434265, 0.8575097918510437, 0.8581752777099609, 0.8587980270385742, 0.8591619729995728, 0.8594193458557129], "recall": [0.5418918132781982, 0.6511029005050659, 0.6772952079772949, 0.6909795999526978, 0.7004537582397461, 0.7061043381690979, 0.7108924388885498, 0.7156822085380554, 0.7191828489303589, 0.7210466861724854, 0.7233035564422607, 0.7250064015388489, 0.7256502509117126, 0.728496789932251, 0.7300209999084473, 0.7306752800941467, 0.7320278286933899, 0.7336621284484863, 0.7347287535667419, 0.7356253266334534], "auc": [0.9603787660598755, 0.9767351746559143, 0.9797270894050598, 0.9812973141670227, 0.9822986125946045, 0.9829131960868835, 0.9833866357803345, 0.9838172793388367, 0.984187126159668, 0.9843615293502808, 0.9845773577690125, 0.984706461429596, 0.9847857356071472, 0.9850112199783325, 0.985145092010498, 0.9852291941642761, 0.9853222370147705, 0.9854731559753418, 0.9855602383613586, 0.985647976398468], "val_loss": [0.08428429067134857, 0.08033303916454315, 0.08038511127233505, 0.08096608519554138, 0.07976558804512024, 0.07815061509609222, 0.07851911336183548, 0.07767606526613235, 0.07704006880521774, 0.07933660596609116, 0.07819325476884842, 0.07781866937875748, 0.07618628442287445, 0.08038631081581116, 0.077166847884655, 0.07648592442274094, 0.0782628208398819, 0.079709991812706, 0.08176429569721222, 0.07865331321954727], "val_precision": [0.7823812365531921, 0.774483859539032, 0.7542175650596619, 0.7468299865722656, 0.7501449584960938, 0.7718645334243774, 0.7504627108573914, 0.7476462721824646, 0.7813793420791626, 0.776404082775116, 0.7575372457504272, 0.7933595776557922, 0.7994430661201477, 0.745490550994873, 0.792127788066864, 0.7849271893501282, 0.7672761082649231, 0.8300503492355347, 0.7323877811431885, 0.7473651170730591], "val_recall": [0.59571772813797, 0.6444294452667236, 0.6716616153717041, 0.6858658790588379, 0.6893982887268066, 0.6643393635749817, 0.6947121024131775, 0.7107535600662231, 0.6754910945892334, 0.6543371677398682, 0.6968260407447815, 0.6584882140159607, 0.6634779572486877, 0.6935693025588989, 0.6729927062988281, 0.6751328706741333, 0.6848705410957336, 0.6138136386871338, 0.7018836736679077, 0.7168039083480835], "val_auc": [0.9585540294647217, 0.9626829028129578, 0.9637628793716431, 0.9629242420196533, 0.9644123315811157, 0.964568555355072, 0.9659556150436401, 0.9666422009468079, 0.9643850922584534, 0.9631926417350769, 0.9648608565330505, 0.9619510173797607, 0.9634122252464294, 0.9636821150779724, 0.9623838663101196, 0.9642623662948608, 0.9641448855400085, 0.9581953883171082, 0.9654861092567444, 0.9649681448936462]}
Binary file added cnnModels/model2/saved_model.pb
Binary file not shown.
Binary file not shown.
Binary file added cnnModels/model2/variables/variables.index
Binary file not shown.
Binary file added cnnModels/model3/saved_model.pb
Binary file not shown.
Binary file not shown.
Binary file added cnnModels/model3/variables/variables.index
Binary file not shown.
1 change: 1 addition & 0 deletions cnnModels/model3_history
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
{"loss": [0.22860510647296906], "precision": [0.038188058882951736], "recall": [0.00022644392447546124], "auc": [0.6781324744224548], "val_loss": [0.17610669136047363], "val_precision": [0.0], "val_recall": [0.0], "val_auc": [0.7560721635818481]}
Binary file added cnnModels/model3_rand/saved_model.pb
Binary file not shown.
Binary file not shown.
Binary file added cnnModels/model3_rand/variables/variables.index
Binary file not shown.
1 change: 1 addition & 0 deletions cnnModels/model3_rand_history
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
{"loss": [0.11976250261068344, 0.039505161345005035, 0.03579087182879448, 0.034262824803590775, 0.03333510830998421], "precision": [0.849486231803894, 0.8942495584487915, 0.9017559289932251, 0.9048183560371399, 0.9067344665527344], "recall": [0.5676319599151611, 0.8204936981201172, 0.8397273421287537, 0.8472755551338196, 0.8519702553749084], "auc": [0.9402316808700562, 0.9900624752044678, 0.9916161894798279, 0.9922306537628174, 0.9925841093063354], "val_loss": [0.10845491290092468, 0.10566283762454987, 0.10754558444023132, 0.11308400332927704, 0.11602547764778137], "val_precision": [0.7136843204498291, 0.6883338093757629, 0.7233955264091492, 0.697384238243103, 0.696304202079773], "val_recall": [0.6088854670524597, 0.6549392938613892, 0.6177573800086975, 0.6367348432540894, 0.624329149723053], "val_auc": [0.9333585500717163, 0.9414969682693481, 0.9347407221794128, 0.9332108497619629, 0.9302107691764832]}
Binary file added cnnModels/model4/saved_model.pb
Binary file not shown.
Binary file not shown.
Binary file added cnnModels/model4/variables/variables.index
Binary file not shown.
1 change: 1 addition & 0 deletions cnnModels/model4_history
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
{"loss": [0.04260214790701866, 0.042456820607185364, 0.042289987206459045, 0.04212421923875809, 0.04197029024362564, 0.04185638949275017, 0.04171910509467125], "precision": [0.8919454216957092, 0.8920994997024536, 0.8928329348564148, 0.8928585648536682, 0.8933117985725403, 0.8936216235160828, 0.8938382863998413], "recall": [0.8050717115402222, 0.8058952689170837, 0.8068612217903137, 0.8075523376464844, 0.8082984685897827, 0.8089235424995422, 0.8094714879989624], "auc": [0.9895743727684021, 0.9896538257598877, 0.9896856546401978, 0.989791989326477, 0.9898599982261658, 0.9898791909217834, 0.9899778366088867], "val_loss": [0.1965121179819107, 0.1995244175195694, 0.19265027344226837, 0.19152997434139252, 0.2252369076013565, 0.19314096868038177, 0.22109083831310272], "val_precision": [0.899262547492981, 0.8932473659515381, 0.8920761346817017, 0.8860844969749451, 0.9073917865753174, 0.8728659749031067, 0.9022504687309265], "val_recall": [0.36320167779922485, 0.36386460065841675, 0.3589344620704651, 0.38563135266304016, 0.3230592906475067, 0.4090116024017334, 0.33682307600975037], "val_auc": [0.8514618873596191, 0.8484829664230347, 0.8543187379837036, 0.8549653887748718, 0.8300596475601196, 0.8562168478965759, 0.8329113721847534]}
Binary file added cnnModels/model4_rand/saved_model.pb
Binary file not shown.
Binary file not shown.
Binary file added cnnModels/model4_rand/variables/variables.index
Binary file not shown.
1 change: 1 addition & 0 deletions cnnModels/model4_rand_history
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
{"loss": [0.05270650237798691, 0.05084516480565071, 0.04939522594213486, 0.04807208478450775, 0.04702943190932274, 0.0461423359811306, 0.045344576239585876, 0.04459711164236069, 0.043860986828804016, 0.04336699843406677, 0.042828381061553955, 0.04235629737377167, 0.041921500116586685, 0.041464753448963165, 0.041136644780635834, 0.04086465388536453, 0.040484145283699036, 0.04020319879055023, 0.03990505263209343, 0.03965515270829201, 0.039427340030670166, 0.039205048233270645, 0.038990139961242676, 0.038828667253255844, 0.038664791733026505, 0.0384344682097435, 0.03826775774359703, 0.03813641518354416, 0.03798497095704079, 0.0378301739692688, 0.03767208755016327, 0.03754204884171486, 0.037296075373888016, 0.037244901061058044, 0.03710199519991875, 0.03701057285070419, 0.036876969039440155, 0.03675999864935875, 0.03662259504199028, 0.03652259334921837, 0.03644052520394325, 0.03629525005817413, 0.03620714321732521, 0.03614219278097153], "precision": [0.8700058460235596, 0.8733369708061218, 0.8763373494148254, 0.8786683082580566, 0.8808934688568115, 0.8827050924301147, 0.8844923377037048, 0.8859807252883911, 0.8873921036720276, 0.8884615898132324, 0.8896322250366211, 0.8907022476196289, 0.8918065428733826, 0.8926635980606079, 0.8934804797172546, 0.8940927982330322, 0.8948292136192322, 0.8955528736114502, 0.8960493206977844, 0.8967517614364624, 0.8971712589263916, 0.8976140022277832, 0.8981031179428101, 0.8985973000526428, 0.8988378047943115, 0.8992220759391785, 0.8997812867164612, 0.89988112449646, 0.9002780318260193, 0.9006905555725098, 0.901080310344696, 0.9013481140136719, 0.9018735289573669, 0.902018666267395, 0.902242124080658, 0.9025130271911621, 0.9028168320655823, 0.9029610753059387, 0.9033645987510681, 0.9036439657211304, 0.9037593007087708, 0.9039664268493652, 0.9043818116188049, 0.9044284820556641], "recall": [0.7513993382453918, 0.7613458037376404, 0.7688204646110535, 0.7756459712982178, 0.7811136245727539, 0.7856983542442322, 0.7897512316703796, 0.7934713363647461, 0.7970831990242004, 0.7996471524238586, 0.8024038076400757, 0.8047620058059692, 0.8070511221885681, 0.8089661002159119, 0.8111045956611633, 0.8123693466186523, 0.814357578754425, 0.8158627152442932, 0.8173449635505676, 0.8185835480690002, 0.8196732401847839, 0.8206522464752197, 0.8219665288925171, 0.822799563407898, 0.8236910104751587, 0.8248749375343323, 0.8257189393043518, 0.8264212608337402, 0.8270824551582336, 0.8280074000358582, 0.8289074301719666, 0.8294597864151001, 0.8304668664932251, 0.8308790326118469, 0.831402599811554, 0.831974983215332, 0.83274245262146, 0.8331432342529297, 0.8338574171066284, 0.8344437479972839, 0.8350110650062561, 0.8355336785316467, 0.8358151912689209, 0.8365201354026794], "auc": [0.9855103492736816, 0.9864603281021118, 0.987140417098999, 0.9877628684043884, 0.9882012605667114, 0.9886085987091064, 0.9889216423034668, 0.9892677068710327, 0.9895493388175964, 0.9897981286048889, 0.9899775981903076, 0.9901475310325623, 0.9903427362442017, 0.9905158877372742, 0.9905960559844971, 0.9907365441322327, 0.9908433556556702, 0.9909591674804688, 0.9910747408866882, 0.9911633729934692, 0.9912546277046204, 0.9913307428359985, 0.991412878036499, 0.9914725422859192, 0.9915281534194946, 0.9916185140609741, 0.9916813373565674, 0.991735577583313, 0.9917558431625366, 0.991837203502655, 0.9918678402900696, 0.9919361472129822, 0.9919993281364441, 0.992015540599823, 0.9920931458473206, 0.992109477519989, 0.9921621084213257, 0.9921845197677612, 0.9922429919242859, 0.9922595620155334, 0.9922839999198914, 0.9923786520957947, 0.9923651218414307, 0.9923971891403198], "val_loss": [0.13718906044960022, 0.14837980270385742, 0.1532118171453476, 0.16317801177501678, 0.1668676733970642, 0.17012391984462738, 0.17918267846107483, 0.15446016192436218, 0.17074857652187347, 0.19340243935585022, 0.19331935048103333, 0.18804627656936646, 0.19495269656181335, 0.19163399934768677, 0.18217934668064117, 0.20486047863960266, 0.2071661651134491, 0.1928747296333313, 0.21542616188526154, 0.216808021068573, 0.21713495254516602, 0.2177896946668625, 0.21865610778331757, 0.2334202080965042, 0.22663412988185883, 0.2197810262441635, 0.21414442360401154, 0.23225785791873932, 0.22367370128631592, 0.2294173687696457, 0.24424350261688232, 0.22797219455242157, 0.25156643986701965, 0.22163695096969604, 0.24831177294254303, 0.23899032175540924, 0.22693361341953278, 0.25246044993400574, 0.25855380296707153, 0.23517082631587982, 0.2555971145629883, 0.23726849257946014, 0.2568505108356476, 0.25468724966049194], "val_precision": [0.8160941004753113, 0.8223390579223633, 0.8079804182052612, 0.8162984251976013, 0.8044447302818298, 0.7893444895744324, 0.7986743450164795, 0.7523075342178345, 0.7841059565544128, 0.8161644339561462, 0.8044565320014954, 0.7920917272567749, 0.795149564743042, 0.7984898090362549, 0.7777653932571411, 0.8039699196815491, 0.7977805137634277, 0.774038553237915, 0.8156187534332275, 0.7984638810157776, 0.8067005276679993, 0.8023777008056641, 0.8055893778800964, 0.8229149580001831, 0.8150281310081482, 0.8004196286201477, 0.7953223586082458, 0.8054823279380798, 0.7942324280738831, 0.8047236800193787, 0.8225268721580505, 0.8045384883880615, 0.8281111717224121, 0.7978334426879883, 0.8280532956123352, 0.8228936195373535, 0.8093662261962891, 0.8213583827018738, 0.8220294713973999, 0.802086353302002, 0.8275445103645325, 0.8169872760772705, 0.8295887112617493, 0.8297156691551208], "val_recall": [0.5027086734771729, 0.4737149178981781, 0.4803037643432617, 0.45763492584228516, 0.4590666890144348, 0.47664642333984375, 0.4499918818473816, 0.5469261407852173, 0.4882643222808838, 0.4254620373249054, 0.43158742785453796, 0.4570741355419159, 0.44814449548721313, 0.44931846857070923, 0.49410369992256165, 0.43343299627304077, 0.43859654664993286, 0.48108959197998047, 0.413898229598999, 0.42386385798454285, 0.41803762316703796, 0.4158304035663605, 0.41169631481170654, 0.3863007426261902, 0.4122837781906128, 0.43378201127052307, 0.45587196946144104, 0.4027112126350403, 0.4324573874473572, 0.4156351089477539, 0.3739921748638153, 0.4257410764694214, 0.3685118556022644, 0.43549197912216187, 0.3707849383354187, 0.3939858675003052, 0.4184276759624481, 0.37616026401519775, 0.36023086309432983, 0.4151420295238495, 0.36256858706474304, 0.40641865134239197, 0.3679157495498657, 0.36467739939689636], "val_auc": [0.9019555449485779, 0.891761839389801, 0.8894108533859253, 0.8809293508529663, 0.8801430463790894, 0.878123939037323, 0.8711434006690979, 0.8956156373023987, 0.8806689381599426, 0.861849844455719, 0.8626521825790405, 0.8678402900695801, 0.8636072874069214, 0.8656911253929138, 0.876333475112915, 0.8567231297492981, 0.8569042086601257, 0.8694580793380737, 0.8502647876739502, 0.8498510718345642, 0.8488383889198303, 0.848993718624115, 0.847943902015686, 0.8376045823097229, 0.843889057636261, 0.8503061532974243, 0.8562151193618774, 0.8398865461349487, 0.8492513298988342, 0.8439021110534668, 0.8306303024291992, 0.8448022603988647, 0.8258571624755859, 0.8493852615356445, 0.8276674151420593, 0.8354316353797913, 0.8450294137001038, 0.8265118598937988, 0.8218305110931396, 0.8403748869895935, 0.8224382400512695, 0.8387565612792969, 0.8232311606407166, 0.8238226771354675]}
Binary file added cnnModels/model5_MUS_log/saved_model.pb
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file added cnnModels/model5_MUS_log_10/saved_model.pb
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file added cnnModels/model5_MUS_log_15/saved_model.pb
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file added cnnModels/model5_MUS_log_20/saved_model.pb
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file added cnnModels/model5_MUS_log_5/saved_model.pb
Binary file not shown.
Binary file not shown.
Binary file not shown.
1 change: 1 addition & 0 deletions cnnModels/model5_MUS_log_history
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
{"loss": [0.05702520161867142, 0.0478425957262516, 0.04621583968400955, 0.045236628502607346, 0.0446939617395401, 0.044448211789131165, 0.044198423624038696, 0.04381341114640236, 0.04372972995042801, 0.04351966455578804, 0.043444614857435226, 0.043222006410360336, 0.04326608404517174, 0.043088775128126144, 0.043114013969898224, 0.04291535168886185, 0.04291628301143646, 0.04289408028125763, 0.04272817447781563, 0.04268373176455498], "precision": [0.8575598001480103, 0.8724756836891174, 0.8765972256660461, 0.8792115449905396, 0.8807533383369446, 0.8814904093742371, 0.8823021054267883, 0.8834315538406372, 0.8839873671531677, 0.8843372464179993, 0.8846595883369446, 0.8852213621139526, 0.8853282332420349, 0.8856565356254578, 0.8854605555534363, 0.8859710693359375, 0.8861968517303467, 0.8862340450286865, 0.886793315410614, 0.8868207931518555], "recall": [0.7344770431518555, 0.7853121757507324, 0.7925234436988831, 0.796605110168457, 0.7992581129074097, 0.8004920482635498, 0.8016335368156433, 0.8030659556388855, 0.8036412000656128, 0.804442286491394, 0.8050461411476135, 0.8058306574821472, 0.8059746623039246, 0.8064900636672974, 0.8064824342727661, 0.8073137998580933, 0.8073723912239075, 0.8074209690093994, 0.8081314563751221, 0.8082908987998962], "auc": [0.9822008013725281, 0.9868574142456055, 0.9875969290733337, 0.9880086183547974, 0.9882185459136963, 0.9883159399032593, 0.9883943796157837, 0.9885552525520325, 0.9886223673820496, 0.9887279868125916, 0.9887246489524841, 0.9888260960578918, 0.9887703061103821, 0.9888604879379272, 0.9888870716094971, 0.9889266490936279, 0.9889287948608398, 0.9889366030693054, 0.98902428150177, 0.9890180826187134], "val_loss": [0.08239901065826416, 0.08731062710285187, 0.08745486289262772, 0.08636002242565155, 0.08446519821882248, 0.08401387929916382, 0.08519315719604492, 0.08784066140651703, 0.08315423876047134, 0.08954538404941559, 0.0880412831902504, 0.08443821221590042, 0.08517219871282578, 0.08648610860109329, 0.08844337612390518, 0.08987974375486374, 0.08571077883243561, 0.08733318746089935, 0.09018231928348541, 0.09646756947040558], "val_precision": [0.7690638303756714, 0.7202607989311218, 0.7387064695358276, 0.7310119271278381, 0.7378535866737366, 0.7464638948440552, 0.7217741012573242, 0.7229005694389343, 0.7321094870567322, 0.6990559101104736, 0.7130293846130371, 0.7432036995887756, 0.7587810158729553, 0.7731946706771851, 0.7159155607223511, 0.7762277126312256, 0.7466667890548706, 0.7857764959335327, 0.726629912853241, 0.6975131630897522], "val_recall": [0.6645253896713257, 0.6773328185081482, 0.6691598296165466, 0.6993301510810852, 0.6767244935035706, 0.687165379524231, 0.6999526023864746, 0.6981784701347351, 0.7072988152503967, 0.6990004181861877, 0.6883404850959778, 0.6763949990272522, 0.6649635434150696, 0.6451836824417114, 0.684386670589447, 0.6214264631271362, 0.6840769052505493, 0.634627640247345, 0.6455765962600708, 0.6372383236885071], "val_auc": [0.9601866602897644, 0.9596887230873108, 0.9569811224937439, 0.9593343734741211, 0.9610468149185181, 0.9601772427558899, 0.9624635577201843, 0.9592505693435669, 0.963351845741272, 0.9597234129905701, 0.9601864218711853, 0.9603606462478638, 0.958447277545929, 0.9551681876182556, 0.9590062499046326, 0.9520922303199768, 0.9583778977394104, 0.9535975456237793, 0.9550095796585083, 0.9513126611709595]}
Binary file added cnnModels/model5_MUSlh_log/saved_model.pb
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file added cnnModels/model5_MUSlh_log_10/saved_model.pb
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file added cnnModels/model5_MUSlh_log_15/saved_model.pb
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file added cnnModels/model5_MUSlh_log_20/saved_model.pb
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file added cnnModels/model5_MUSlh_log_5/saved_model.pb
Binary file not shown.
Binary file not shown.
Binary file not shown.
Loading

0 comments on commit e4709ab

Please sign in to comment.