diff --git a/python/dgl/graphbolt/impl/ondisk_dataset.py b/python/dgl/graphbolt/impl/ondisk_dataset.py index 5da99fe74f23..e636e17e8f31 100644 --- a/python/dgl/graphbolt/impl/ondisk_dataset.py +++ b/python/dgl/graphbolt/impl/ondisk_dataset.py @@ -118,7 +118,18 @@ def preprocess_ondisk_dataset( # 2. Load the edge data and create a DGLGraph. if "graph" not in input_config: raise RuntimeError("Invalid config: does not contain graph field.") - is_homogeneous = "type" not in input_config["graph"]["nodes"][0] + # For any graph that node/edge types are specified, we construct DGLGraph + # with `dgl.heterograph()` even there's only one node/edge type. This is + # because we want to save the node/edge types in the graph. So the logic of + # checking whether the graph is homogeneous is different from the logic in + # `DGLGraph.is_homogeneous()`. Otherwise, we construct DGLGraph with + # `dgl.graph()`. + is_homogeneous = ( + len(input_config["graph"]["nodes"]) == 1 + and len(input_config["graph"]["edges"]) == 1 + and "type" not in input_config["graph"]["nodes"][0] + and "type" not in input_config["graph"]["edges"][0] + ) if is_homogeneous: # Homogeneous graph. num_nodes = input_config["graph"]["nodes"][0]["num"] @@ -178,20 +189,24 @@ def preprocess_ondisk_dataset( if not is_homogeneous: # For heterogenous graph, a node/edge feature must cover all # node/edge types. - for feat_name, feat_data in g.ndata.items(): - existing_types = set(feat_data.keys()) - assert existing_types == set(g.ntypes), ( - f"Node feature {feat_name} does not cover all node types." - + f"Existing types: {existing_types}." - + f"Expected types: {g.ntypes}." - ) - for feat_name, feat_data in g.edata.items(): - existing_types = set(feat_data.keys()) - assert existing_types == set(g.canonical_etypes), ( - f"Edge feature {feat_name} does not cover all edge types." - + f"Existing types: {existing_types}." - + f"Expected types: {g.etypes}." - ) + ntypes = g.ntypes + assert all( + set(g.nodes[ntypes[0]].data.keys()) + == set(g.nodes[ntype].data.keys()) + for ntype in ntypes + ), ( + "Node feature does not cover all node types: " + + f"{set(g.nodes[ntype].data.keys() for ntype in ntypes)}." + ) + etypes = g.canonical_etypes + assert all( + set(g.edges[etypes[0]].data.keys()) + == set(g.edges[etype].data.keys()) + for etype in etypes + ), ( + "Edge feature does not cover all edge types: " + + f"{set(g.edges[etype].data.keys() for etype in etypes)}." + ) # 4. Convert the DGLGraph to a FusedCSCSamplingGraph. fused_csc_sampling_graph = from_dglgraph( diff --git a/tests/python/pytorch/graphbolt/impl/test_ondisk_dataset.py b/tests/python/pytorch/graphbolt/impl/test_ondisk_dataset.py index ef15453463e7..bf597593caf5 100644 --- a/tests/python/pytorch/graphbolt/impl/test_ondisk_dataset.py +++ b/tests/python/pytorch/graphbolt/impl/test_ondisk_dataset.py @@ -2742,3 +2742,83 @@ def test_OnDiskDataset_load_tasks_selectively(): dataset = gb.OnDiskDataset(test_dir).load(tasks=2) dataset = None + + +def test_OnDiskDataset_preprocess_graph_with_single_type(): + """Test for graph with single node/edge type.""" + with tempfile.TemporaryDirectory() as test_dir: + # All metadata fields are specified. + dataset_name = "graphbolt_test" + num_nodes = 4000 + num_edges = 20000 + + # Generate random edges. + nodes = np.repeat(np.arange(num_nodes), 5) + neighbors = np.random.randint(0, num_nodes, size=(num_edges)) + edges = np.stack([nodes, neighbors], axis=1) + # Wrtie into edges/edge.csv + os.makedirs(os.path.join(test_dir, "edges/"), exist_ok=True) + edges = pd.DataFrame(edges, columns=["src", "dst"]) + edges.to_csv( + os.path.join(test_dir, "edges/edge.csv"), + index=False, + header=False, + ) + + # Generate random graph edge-feats. + edge_feats = np.random.rand(num_edges, 5) + os.makedirs(os.path.join(test_dir, "data/"), exist_ok=True) + np.save(os.path.join(test_dir, "data/edge-feat.npy"), edge_feats) + + # Generate random node-feats. + node_feats = np.random.rand(num_nodes, 10) + np.save(os.path.join(test_dir, "data/node-feat.npy"), node_feats) + + yaml_content = f""" + dataset_name: {dataset_name} + graph: # graph structure and required attributes. + nodes: + - num: {num_nodes} + type: author + edges: + - type: author:collab:author + format: csv + path: edges/edge.csv + feature_data: + - domain: edge + type: author:collab:author + name: feat + format: numpy + path: data/edge-feat.npy + - domain: node + type: author + name: feat + format: numpy + path: data/node-feat.npy + """ + yaml_file = os.path.join(test_dir, "metadata.yaml") + with open(yaml_file, "w") as f: + f.write(yaml_content) + + dataset = gb.OnDiskDataset(test_dir).load() + assert dataset.dataset_name == dataset_name + + graph = dataset.graph + assert isinstance(graph, gb.FusedCSCSamplingGraph) + assert graph.total_num_nodes == num_nodes + assert graph.total_num_edges == num_edges + assert ( + graph.node_attributes is not None + and "feat" in graph.node_attributes + ) + assert ( + graph.edge_attributes is not None + and "feat" in graph.edge_attributes + ) + assert torch.equal(graph.node_type_offset, torch.tensor([0, num_nodes])) + assert torch.equal( + graph.type_per_edge, + torch.zeros(num_edges), + ) + assert graph.edge_type_to_id == {"author:collab:author": 0} + assert graph.node_type_to_id == {"author": 0}