-
Notifications
You must be signed in to change notification settings - Fork 1
/
modeling_monet_vllm.py
693 lines (622 loc) · 26.3 KB
/
modeling_monet_vllm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
# coding=utf-8
# Adapted from
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
# Copyright 2023 The vLLM team.
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only Monet model compatible with HuggingFace weights."""
from __future__ import annotations
from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
import torch
from scipy.stats import norm
from torch import nn
from transformers import PretrainedConfig
from transformers.activations import ACT2FN
from vllm.attention import Attention, AttentionMetadata
from vllm.config import CacheConfig, LoRAConfig
from vllm.distributed import (
get_pp_group,
get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size,
)
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import QKVParallelLinear, RowParallelLinear
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization.base_config import QuantizationConfig
from vllm.model_executor.layers.quantization.compressed_tensors.utils import (
get_compressed_tensors_cache_scale,
)
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.sampler import Sampler, SamplerOutput
from vllm.model_executor.layers.vocab_parallel_embedding import (
DEFAULT_VOCAB_PADDING_SIZE,
ParallelLMHead,
VocabParallelEmbedding,
)
from vllm.model_executor.model_loader.weight_utils import (
default_weight_loader,
kv_cache_scales_loader,
maybe_remap_kv_scale_name,
)
from vllm.model_executor.models.interfaces import SupportsLoRA
from vllm.model_executor.models.utils import (
PPMissingLayer,
is_pp_missing_parameter,
make_layers,
)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.sequence import IntermediateTensors
from vllm.utils import is_hip
class MonetRouter(nn.Module):
def __init__(self, config: PretrainedConfig):
super().__init__()
self.config = config
flatten_shape = config.moe_heads * config.moe_experts
self.w1 = nn.Linear(config.hidden_size, flatten_shape, bias=False)
self.w2 = nn.Linear(config.hidden_size, flatten_shape, bias=False)
self.norm1 = nn.BatchNorm1d(config.moe_heads, affine=False)
self.norm2 = nn.BatchNorm1d(config.moe_heads, affine=False)
def forward(self, x: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
g1z = self.w1(x).unflatten(-1, (self.config.moe_heads, -1)).float()
g2z = self.w2(x).unflatten(-1, (self.config.moe_heads, -1)).float()
g1n = self.norm1(g1z.transpose(-2, -1).flatten(0, -2))
g2n = self.norm2(g2z.transpose(-2, -1).flatten(0, -2))
g1n = g1n.view(*g1z.shape[:-2], g1z.size(-1), -1).transpose(-2, -1)
g2n = g2n.view(*g2z.shape[:-2], g2z.size(-1), -1).transpose(-2, -1)
sigma = float(norm.ppf(1 - self.config.moe_topk / self.config.moe_experts))
g1s = g1n.amax(-1, keepdim=True).clamp_max_(sigma)
g2s = g2n.amax(-1, keepdim=True).clamp_max_(sigma)
g1 = nn.functional.softmax(torch.where(g1n >= g1s, g1z, -1e10), dim=-1)
g2 = nn.functional.softmax(torch.where(g2n >= g2s, g2z, -1e10), dim=-1)
return g1, g2
class MonetMoVDE(nn.Module):
def __init__(self, config: PretrainedConfig):
super().__init__()
self.config = config
self.act_fn = ACT2FN[config.hidden_act]
flatten_shape = config.moe_experts * config.moe_dim // 2
self.u1 = nn.Linear(config.hidden_size, flatten_shape)
self.u2 = nn.Linear(config.hidden_size, flatten_shape)
self.v11 = nn.Linear(flatten_shape, config.hidden_size // 2, bias=False)
self.v12 = nn.Linear(flatten_shape, config.hidden_size // 2, bias=False)
self.v21 = nn.Linear(flatten_shape, config.hidden_size // 2, bias=False)
self.v22 = nn.Linear(flatten_shape, config.hidden_size // 2, bias=False)
self.b1 = nn.Parameter(torch.zeros(config.moe_experts, config.hidden_size // 2))
self.b2 = nn.Parameter(torch.zeros(config.moe_experts, config.hidden_size // 2))
def forward(
self, x: torch.Tensor, g1: torch.Tensor, g2: torch.Tensor
) -> torch.Tensor:
g1, g2 = g1.type_as(x), g2.type_as(x)
x1 = self.act_fn(self.u1(x).unflatten(-1, (self.config.moe_experts, -1)))
x2 = self.act_fn(self.u2(x).unflatten(-1, (self.config.moe_experts, -1)))
x11 = self.v11(torch.einsum("bim,bhi->bim", x1, g1).flatten(-2))
x12 = self.v12(torch.einsum("bjm,bhj,bhi->bim", x2, g2, g1).flatten(-2))
x13 = torch.einsum("bhi,id->bd", g1, self.b1.type_as(x))
x21 = self.v21(torch.einsum("bim,bhi,bhj->bjm", x1, g1, g2).flatten(-2))
x22 = self.v22(torch.einsum("bjm,bhj->bjm", x2, g2).flatten(-2))
x23 = torch.einsum("bhj,jd->bd", g2, self.b2.type_as(x))
return torch.cat((x11 + x12 + x13, x21 + x22 + x23), dim=-1)
class MonetMoHDE(nn.Module):
def __init__(self, config: PretrainedConfig):
super().__init__()
self.config = config
self.act_fn = ACT2FN[config.hidden_act]
flatten_shape = config.moe_experts * config.moe_dim
self.u = nn.Linear(config.hidden_size, flatten_shape)
self.v = nn.Linear(flatten_shape, config.hidden_size, bias=False)
self.b = nn.Parameter(torch.zeros(config.moe_experts, config.hidden_size))
def forward(
self, x: torch.Tensor, g1: torch.Tensor, g2: torch.Tensor
) -> torch.Tensor:
g1, g2 = g1.type_as(x), g2.type_as(x)
x = self.act_fn(self.u(x).unflatten(-1, (self.config.moe_experts, -1)))
x = self.v(torch.einsum("bim,bhi,bhj->bjm", x, g1, g2).flatten(-2))
return x + torch.einsum("bhj,jd->bd", g2, self.b)
class MonetAttention(nn.Module):
def __init__(
self,
config: PretrainedConfig,
hidden_size: int,
num_heads: int,
num_kv_heads: int,
rope_theta: float = 10000,
rope_scaling: Optional[Dict[str, Any]] = None,
max_position_embeddings: int = 8192,
quant_config: Optional[QuantizationConfig] = None,
bias: bool = False,
cache_config: Optional[CacheConfig] = None,
prefix: str = "",
):
super().__init__()
self.hidden_size = hidden_size
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = num_heads
assert self.total_num_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
self.total_num_kv_heads = num_kv_heads
if self.total_num_kv_heads >= tp_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_kv_heads % tp_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
# MistralConfig has an optional head_dim introduced by Mistral-Nemo
self.head_dim = getattr(
config, "head_dim", self.hidden_size // self.total_num_heads
)
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.rope_theta = rope_theta
self.max_position_embeddings = max_position_embeddings
self.qkv_proj = QKVParallelLinear(
hidden_size=hidden_size,
head_size=self.head_dim,
total_num_heads=self.total_num_heads,
total_num_kv_heads=self.total_num_kv_heads,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj",
)
self.o_proj = RowParallelLinear(
input_size=self.total_num_heads * self.head_dim,
output_size=hidden_size,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.o_proj",
)
is_neox_style = True
if quant_config is not None and quant_config.get_name() == "gguf":
is_neox_style = False
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=max_position_embeddings,
base=rope_theta,
rope_scaling=rope_scaling,
is_neox_style=is_neox_style,
)
self.attn = Attention(
self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
cache_config=cache_config,
quant_config=quant_config,
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: AttentionMetadata,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q, k = self.rotary_emb(positions, q, k)
attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
output, _ = self.o_proj(attn_output)
return output
class MonetDecoderLayer(nn.Module):
def __init__(
self,
config: PretrainedConfig,
layer_idx: int,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
self.hidden_size = config.hidden_size
rope_theta = getattr(config, "rope_theta", 10000)
rope_scaling = getattr(config, "rope_scaling", None)
if rope_scaling is not None and getattr(
config, "original_max_position_embeddings", None
):
rope_scaling["original_max_position_embeddings"] = (
config.original_max_position_embeddings
)
max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
# Support abacusai/Smaug-72B-v0.1 with attention_bias
# Support internlm/internlm-7b with bias
attention_bias = getattr(config, "attention_bias", False) or getattr(
config, "bias", False
)
self.self_attn = MonetAttention(
config=config,
hidden_size=self.hidden_size,
num_heads=config.num_attention_heads,
num_kv_heads=getattr(
config, "num_key_value_heads", config.num_attention_heads
),
rope_theta=rope_theta,
rope_scaling=rope_scaling,
max_position_embeddings=max_position_embeddings,
quant_config=quant_config,
bias=attention_bias,
cache_config=cache_config,
prefix=f"{prefix}.self_attn",
)
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(
config.hidden_size, eps=config.rms_norm_eps
)
if config.moe_decompose == "vertical":
self.moe = MonetMoVDE(config)
elif config.moe_decompose == "horizontal":
self.moe = MonetMoHDE(config)
if layer_idx % config.moe_groups == 0:
self.router = MonetRouter(config).requires_grad_(False)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: AttentionMetadata,
residual: Optional[torch.Tensor],
previous_router_probs: tuple[torch.Tensor, torch.Tensor] | None = None,
) -> Tuple[torch.Tensor, torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
# Self Attention
if residual is None:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
else:
hidden_states, residual = self.input_layernorm(hidden_states, residual)
hidden_states = self.self_attn(
positions=positions,
hidden_states=hidden_states,
kv_cache=kv_cache,
attn_metadata=attn_metadata,
)
# Fully Connected
hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
g1, g2 = (
self.router(hidden_states)
if hasattr(self, "router")
else previous_router_probs
)
hidden_states = self.moe(hidden_states, g1, g2)
return hidden_states, residual, (g1, g2)
class MonetModel(nn.Module):
def __init__(
self,
config: PretrainedConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
lora_config: Optional[LoRAConfig] = None,
prefix: str = "",
):
super().__init__()
self.config = config
self.padding_idx = config.pad_token_id
lora_vocab = (
(lora_config.lora_extra_vocab_size * (lora_config.max_loras or 1))
if lora_config
else 0
)
self.vocab_size = config.vocab_size + lora_vocab
self.org_vocab_size = config.vocab_size
if get_pp_group().is_first_rank or (
config.tie_word_embeddings and get_pp_group().is_last_rank
):
self.embed_tokens = VocabParallelEmbedding(
self.vocab_size,
config.hidden_size,
org_num_embeddings=config.vocab_size,
quant_config=quant_config,
)
else:
self.embed_tokens = PPMissingLayer()
layer_idx = 0
def layer_fn(prefix: str) -> MonetDecoderLayer:
nonlocal layer_idx
layer_idx += 1
return MonetDecoderLayer(
config=config,
layer_idx=layer_idx - 1,
cache_config=cache_config,
quant_config=quant_config,
prefix=prefix,
)
self.start_layer, self.end_layer, self.layers = make_layers(
config.num_hidden_layers, layer_fn, prefix=f"{prefix}.layers"
)
if get_pp_group().is_last_rank:
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
else:
self.norm = PPMissingLayer()
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: Optional[torch.Tensor],
positions: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
if get_pp_group().is_first_rank:
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
residual = None
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
residual = intermediate_tensors["residual"]
previous_router_probs = None
for i in range(self.start_layer, self.end_layer):
layer = self.layers[i]
hidden_states, residual, previous_router_probs = layer(
positions,
hidden_states,
kv_caches[i - self.start_layer],
attn_metadata,
residual,
previous_router_probs,
)
if not get_pp_group().is_last_rank:
return IntermediateTensors(
{"hidden_states": hidden_states, "residual": residual}
)
hidden_states, _ = self.norm(hidden_states, residual)
return hidden_states
class MonetForCausalLM(nn.Module, SupportsLoRA):
packed_modules_mapping = {
"qkv_proj": [
"q_proj",
"k_proj",
"v_proj",
],
# "gate_up_proj": [
# "gate_proj",
# "up_proj",
# ],
}
# LoRA specific attributes
supported_lora_modules = [
"qkv_proj",
"o_proj",
# "gate_up_proj",
# "down_proj",
"embed_tokens",
"lm_head",
]
embedding_modules = {
"embed_tokens": "input_embeddings",
"lm_head": "output_embeddings",
}
embedding_padding_modules = ["lm_head"]
bitsandbytes_stacked_params_mapping = {
# shard_name, weight_name, index
"q_proj": ("qkv_proj", 0),
"k_proj": ("qkv_proj", 1),
"v_proj": ("qkv_proj", 2),
# "gate_proj": ("gate_up_proj", 0),
# "up_proj": ("gate_up_proj", 1),
}
# Mistral/Llama models can also be loaded with --load-format mistral
# from consolidated.safetensors checkpoints
mistral_mapping = {
"layers": "model.layers",
"attention": "self_attn",
"wq": "q_proj",
"wk": "k_proj",
"wv": "v_proj",
"wo": "o_proj",
"attention_norm": "input_layernorm",
"feed_forward": "mlp",
# "w1": "gate_proj",
# "w2": "down_proj",
# "w3": "up_proj",
"ffn_norm": "post_attention_layernorm",
"tok_embeddings": "model.embed_tokens",
"output": "lm_head",
"norm": "model.norm",
}
def __init__(
self,
config: PretrainedConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
lora_config: Optional[LoRAConfig] = None,
) -> None:
super().__init__()
self.config = config
self.lora_config = lora_config
self.model = MonetModel(
config, cache_config, quant_config, lora_config=lora_config, prefix="model"
)
if get_pp_group().is_last_rank:
self.unpadded_vocab_size = config.vocab_size
if lora_config:
self.unpadded_vocab_size += lora_config.lora_extra_vocab_size
self.lm_head = ParallelLMHead(
self.unpadded_vocab_size,
config.hidden_size,
org_num_embeddings=config.vocab_size,
padding_size=(
DEFAULT_VOCAB_PADDING_SIZE
# We need bigger padding if using lora for kernel
# compatibility
if not lora_config
else lora_config.lora_vocab_padding_size
),
quant_config=quant_config,
)
if config.tie_word_embeddings:
self.lm_head.weight = self.model.embed_tokens.weight
logit_scale = getattr(config, "logit_scale", 1.0)
self.logits_processor = LogitsProcessor(
self.unpadded_vocab_size, config.vocab_size, logit_scale
)
self.sampler = Sampler()
else:
self.lm_head = PPMissingLayer()
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
model_output = self.model(
input_ids, positions, kv_caches, attn_metadata, intermediate_tensors
)
return model_output
def compute_logits(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
logits = self.logits_processor(self.lm_head, hidden_states, sampling_metadata)
return logits
def sample(
self,
logits: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
next_tokens = self.sampler(logits, sampling_metadata)
return next_tokens
def make_empty_intermediate_tensors(
self, batch_size: int, dtype: torch.dtype, device: torch.device
) -> IntermediateTensors:
return IntermediateTensors(
{
"hidden_states": torch.zeros(
(batch_size, self.config.hidden_size), dtype=dtype, device=device
),
"residual": torch.zeros(
(batch_size, self.config.hidden_size), dtype=dtype, device=device
),
}
)
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
(".qkv_proj", ".q_proj", "q"),
(".qkv_proj", ".k_proj", "k"),
(".qkv_proj", ".v_proj", "v"),
# (".gate_up_proj", ".gate_proj", 0),
# (".gate_up_proj", ".up_proj", 1),
]
params_dict = dict(self.named_parameters()) | dict(self.named_buffers())
for name, loaded_weight in weights:
name, loaded_weight = self.maybe_remap_mistral(name, loaded_weight)
if "rotary_emb.inv_freq" in name:
continue
if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name:
# Models trained using ColossalAI may include these tensors in
# the checkpoint. Skip them.
continue
# With tie_word_embeddings, we can skip lm_head.weight
# The weight might appear unnecessarily in the files if the model is
# processed with quantization, LoRA, fine-tuning, etc.
if self.config.tie_word_embeddings and "lm_head.weight" in name:
continue
if scale_name := get_compressed_tensors_cache_scale(name):
# Loading kv cache scales for compressed-tensors quantization
param = params_dict[scale_name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
loaded_weight = loaded_weight[0]
weight_loader(param, loaded_weight)
continue
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
# Remapping the name of FP8 kv-scale.
name = maybe_remap_kv_scale_name(name, params_dict)
if name is None:
continue
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader(param, loaded_weight)
# If this function is called, it should always initialize KV cache scale
# factors (or else raise an exception). Thus, handled exceptions should
# make sure to leave KV cache scale factors in a known good (dummy) state
def load_kv_cache_scales(self, quantization_param_path: str) -> None:
tp_size = get_tensor_model_parallel_world_size()
tp_rank = get_tensor_model_parallel_rank()
for layer_idx, scaling_factor in kv_cache_scales_loader(
quantization_param_path,
tp_rank,
tp_size,
self.config.num_hidden_layers,
self.config.__class__.model_type,
):
if not isinstance(self.model.layers[layer_idx], nn.Identity):
layer_self_attn = self.model.layers[layer_idx].self_attn
if is_hip():
# The scaling factor convention we are assuming is
# quantized_value * scaling_factor ~= true_value
# which is consistent with the practice of setting
# scaling_factor = tensor_amax / FPtype_max
scaling_factor *= 2
if hasattr(layer_self_attn, "kv_scale"):
layer_self_attn.attn._kv_scale = scaling_factor
else:
raise RuntimeError(
"Self attention has no KV cache scaling " "factor attribute!"
)
# This function is used to remap the mistral format as
# used by Mistral and Llama <=2
def maybe_remap_mistral(
self, name: str, loaded_weight: torch.Tensor
) -> Tuple[str, torch.Tensor]:
def permute(w, n_heads):
attn_in = self.config.head_dim * n_heads
attn_out = self.config.hidden_size
return (
w.view(n_heads, attn_in // n_heads // 2, 2, attn_out)
.transpose(1, 2)
.reshape(attn_in, attn_out)
)
mapping = self.mistral_mapping
modules = name.split(".")
# rotary embeds should be sliced
if "wk" in modules:
loaded_weight = permute(loaded_weight, self.config.num_key_value_heads)
elif "wq" in modules:
loaded_weight = permute(loaded_weight, self.config.num_attention_heads)
for item in modules:
if item in mapping and mapping[item] not in name:
name = name.replace(item, mapping[item])
return name, loaded_weight