-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdep_effect.py
373 lines (314 loc) · 15.3 KB
/
dep_effect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
import numpy as np
import pandas as pd
from scipy import stats
from statsmodels.stats.weightstats import ttost_ind
from matplotlib import pyplot as plt
import seaborn as sns
import statsmodels.api as sm
import statsmodels.formula.api as smf
from statsmodels.stats.multitest import multipletests
import statsmodels.stats.anova as anova
from pymer4.models import Lmer
from sklearn.model_selection import cross_val_score, ShuffleSplit
from sklearn.ensemble import ExtraTreesRegressor
from sklearn.linear_model import LinearRegression
from matplotlib.patches import Rectangle
# need distribution of CES-D scores
svdat = pd.read_csv('../Data/OutFiles/Mmi-AdultOpeningRest_Survey.csv', index_col=0)
trdat = pd.read_csv('../Data/OutFiles/Mmi-AdultOpeningRest_Trial.csv', index_col=0)
# Create indicator for block type
trdat.loc[(trdat.trialType=='closed') & (trdat.targetHappiness == 'random'), 'targetHappiness'] = -1
trdat['targetHappiness'] = trdat.targetHappiness.astype(float)
trdat['trial_type'] = trdat.trialType
trdat.loc[(trdat.trialType=='closed') & (trdat.targetHappiness == 1), 'trial_type'] = 'positive'
trdat.loc[(trdat.trialType=='closed') & (trdat.targetHappiness == 0), 'trial_type'] = 'negative'
trdat.loc[(trdat.trialType=='closed') & (trdat.targetHappiness == -1), 'trial_type'] = 'random'
# get minimum ratings during rest and negative blocks
neg_batches = (trdat
.groupby(['batchName', 'iBlock', 'trial_type'])[['participant']]
.count()
.reset_index()
.query("trial_type == 'negative'")
.batchName.values)
rdat = (trdat
.loc[trdat.batchName.isin(neg_batches) & trdat.trial_type.isin(['rest'])]
.copy()
.groupby(['batchName', 'participant', 'iBlock',])[['rating']]
.min()
.reset_index())
ndat = (trdat
.loc[trdat.batchName.isin(neg_batches) & trdat.trial_type.isin(['negative'])]
.copy()
.groupby(['batchName', 'participant', 'iBlock',])[['rating']]
.min()
.reset_index())
rndat = rdat.merge(ndat, how='outer', on=['batchName', 'participant'], suffixes=['_rst', '_neg'])
print("batches with rest and negative blocks:")
print(rndat.batchName.unique())
# merge in fractional risk score
svdat['frs'] = svdat.CESD/16
assert svdat.frs.isnull().sum() == 0
rndat = rndat.merge(svdat.loc[:, ['participant', 'batchName', 'frs']], how='left', on=['batchName', 'participant'])
rndat['relative_floor'] = (rndat.rating_rst <= rndat.rating_neg).astype(int)
rndat['actual_floor'] = (rndat.rating_rst == 0).astype(int)
rndat['mindif'] = rndat.rating_rst - rndat.rating_neg
rndat['keep_floor'] = (~(rndat.relative_floor.astype(bool) | rndat.relative_floor.astype(bool) )).astype(int)
# indicators to drop anyone who's hit a relative or absolute floor
floor_kept = rndat.loc[rndat.keep_floor == 1, ['batchName', 'participant']]
floor_kept = floor_kept.rename(columns={'batchName':'Cohort', 'participant':'Subject'})
floor_dropped = rndat.loc[rndat.keep_floor == 0, ['batchName', 'participant']]
# Fit lmers
pymer_input = pd.read_csv('../Data/OutFiles/Mmi-AllOpeningRestAndRandom_pymerInput-full.csv', index_col=0)
# basic result
print("basic result")
lmString = 'Mood ~ 1 + Time * (isMale + meanIRIOver20 + totalWinnings + meanRPE + fracRiskScore + isAge0to16 + ' \
'isAge16to18 + isAge40to100) + (Time | Subject)'
modela = Lmer(lmString, data=pymer_input)
_ = modela.fit()
dfFit = modela.coefs
print(dfFit)
# just drop actual floor and rerun
print()
print("Just drop actual floor and rerun")
act_floor_dat = pymer_input.groupby(['Cohort', 'Subject'])[['Mood', 'fracRiskScore']].min().reset_index()
act_floor_dat['actual_floor'] = (act_floor_dat.Mood == 0).astype(int)
no_floor_df = act_floor_dat.loc[act_floor_dat.actual_floor==0, ['Cohort', 'Subject']]
pymer_noactfloor = no_floor_df.merge(pymer_input, how='inner', on=['Cohort', 'Subject'])
lmString = 'Mood ~ 1 + Time * (isMale + meanIRIOver20 + totalWinnings + meanRPE + fracRiskScore + isAge0to16 + ' \
'isAge16to18 + isAge40to100) + (Time | Subject)'
model = Lmer(lmString, data=pymer_noactfloor)
_ = model.fit()
dfFit = model.coefs
print(dfFit)
print("Interaction is still there.")
print()
# Do we see the Time:fracRiskScore interaction in the cohorts where we can calculate a relative floor?
print("Do we see the Time:fracRiskScore interaction in the cohorts where we can calculate a relative floor?")
pymer_floor_cohorts = pymer_input.loc[pymer_input.Cohort.isin(floor_kept.Cohort.unique())]
lmString = 'Mood ~ 1 + Time * (isMale + meanIRIOver20 + totalWinnings + meanRPE + fracRiskScore + isAge0to16 + ' \
'isAge16to18 + isAge40to100) + (Time | Subject)'
modela = Lmer(lmString, data=pymer_floor_cohorts)
_ = modela.fit()
dfFit = modela.coefs
print(dfFit)
print("We don't, so we can't use relative floor.")
pymer_input['Depression Risk'] = pymer_input.fracRiskScore >= 1
pymer_input.groupby('Depression Risk').Subject.nunique()
# calc a GLM for each person
lmString = 'Mood ~ 1 + Time'
glmres = []
for ss, df in pymer_input.groupby('Subject'):
try:
res = smf.glm(lmString, df).fit()
row = res.params
row['Subject'] = ss
row['fracRiskScore'] = df.fracRiskScore.unique()[0]
pvals = res.pvalues
pvals.index = pvals.index + '_pval'
row = pd.concat([row, pvals])
except ValueError:
assert df.Mood.nunique() == 1
row = {}
row['Subject'] = ss
row['Intercept'] = df.Mood.unique()[0]
row['Time'] = 0
row['fracRiskScore'] = df.fracRiskScore.unique()[0]
row['Intercept_pval'] = np.nan
row['Time_pval'] = 1
glmres.append(pd.Series(row))
glmres = pd.DataFrame(glmres)
alpha = 0.05
sig, _, _, _ = multipletests(glmres.Time_pval, alpha, method='fdr_bh')
glmres['sig'] = sig
glmres['Time Sign'] = 0
glmres.loc[(glmres.Time < 0) & (glmres.sig), 'Time Sign'] = -1
glmres.loc[(glmres.Time > 0) & (glmres.sig), 'Time Sign'] = 1
glmres['Depression Risk'] = glmres.fracRiskScore >= 1
assert glmres.Subject.nunique() == pymer_input.Subject.nunique()
pt_frs_obs = glmres.groupby(['Depression Risk', 'Time Sign']).Intercept.count().reset_index().pivot(index='Depression Risk', columns='Time Sign')
pt_frs_obs.columns = pt_frs_obs.columns.get_level_values(1)
# binarize time
print("Proportion of people with positive, zero, and negative mood slopes over time.")
print(pt_frs_obs)
print("Pearson r between time slope and frac risk score.")
print(stats.pearsonr(glmres.Time, glmres.fracRiskScore))
r, rp = stats.pearsonr(glmres.Time, glmres.fracRiskScore)
print("Pearson r between time slope and frac risk score if you just look at positive slopes.")
print(stats.pearsonr(glmres.query("Time > 0").Time, glmres.query("Time > 0").fracRiskScore))
print()
chi2, p, dof, expected = stats.chi2_contingency(pt_frs_obs)
pt_frs_exp = pt_frs_obs.copy()
pt_frs_exp.loc[False, :] = expected[0]
pt_frs_exp.loc[True, :] = expected[1]
print("Positive time slope vs fractional risk score expected contengency")
print(expected)
print(f'chi2_{dof} = {chi2}, p = {p}')
print("positive vs non-positive")
pt_frs_obs_pvnp = pt_frs_obs.copy()
pt_frs_obs_pvnp.loc[:, 0] = pt_frs_obs_pvnp.loc[:, -1] + pt_frs_obs_pvnp.loc[:, 0]
pt_frs_obs_pvnp = pt_frs_obs_pvnp.loc[:,[ 0,1]]
print("Proportion of people with positive and non-positive mood slopes over time.")
print(pt_frs_obs_pvnp)
chi2_pvnp, p_pvnp, dof_pvnp, expected_pvnp = stats.chi2_contingency(pt_frs_obs_pvnp)
pt_frs_exp_pvnp = pt_frs_obs_pvnp.copy()
pt_frs_exp_pvnp.loc[False, :] = expected_pvnp[0]
pt_frs_exp_pvnp.loc[True, :] = expected_pvnp[1]
print("Positive time slope vs fractional risk score expected contengency")
print(expected_pvnp)
print(f'chi2_{dof_pvnp} = {chi2_pvnp}, p = {p_pvnp}')
interped = []
for ss, df in pymer_input.groupby("Subject"):
df['on_interval'] = False
add_time = []
for tt in np.arange(1/6, df.Time.max(), 1/6):
row = df.iloc[0].copy()
if tt not in df.Time.values:
row['Time'] = tt
row['Mood'] = np.nan
row['on_interval'] = True
add_time.append(row)
else:
df.loc[df.Time == tt, 'on_interval'] = True
add_time = pd.DataFrame(add_time)
timedf = pd.concat([df, add_time]).sort_values('Time')
timedf['Timestamp'] = timedf.Time.apply(lambda x: pd.Timestamp(x, unit='m'))
timedf = timedf.set_index('Timestamp')
timedf['interp_mood'] = timedf.Mood.interpolate('time')
timedf = timedf.reset_index()
interped.append(timedf)
interped = pd.concat(interped).reset_index(drop=True)
time_to_plot = 6
subs_for_agg = interped.query('on_interval').groupby("Subject").Time.max().reset_index().query('Time >= @time_to_plot').Subject
time_agg = interped.query('on_interval & Time <= @time_to_plot & Subject.isin(@subs_for_agg)', engine='python').groupby(['Depression Risk', 'Time'])[['interp_mood']].agg(['mean', 'count', 'sem'])
time_agg.columns = time_agg.columns.get_level_values(1)
time_agg = time_agg.reset_index()
time_agg['leb'] = time_agg['mean'] - time_agg['sem']
time_agg['ueb'] = time_agg['mean'] + time_agg['sem']
to_plot= glmres.copy()
to_plot['Sign of Mood Drift'] = to_plot['Time Sign'].replace({-1:'Neg.', 0:'Non-sig.', 1:'Pos.'})
fig,axes = plt.subplots(1, 3, figsize=(7.5,5))
# Panel A
ax = axes[0]
nr_dat = time_agg.loc[~time_agg['Depression Risk']]
x = nr_dat.Time*60
y = nr_dat['mean']
ax.plot(x,y, label=f'Not at risk\n(n = {time_agg.loc[~time_agg["Depression Risk"], "count"].values[0]})')
y1 = nr_dat.leb
y2 = nr_dat.ueb
ax.fill_between(x, y1, y2, alpha = 0.4)
ar_dat = time_agg.loc[time_agg['Depression Risk']]
x = ar_dat.Time*60
y = ar_dat['mean']
ax.plot(x,y, label=f'At risk of depression\n(n = {time_agg.loc[time_agg["Depression Risk"], "count"].values[0]})')
y1 = ar_dat.leb
y2 = ar_dat.ueb
ax.fill_between(x, y1, y2, alpha = 0.4)
ax.set_xlabel('Time (s)')
ax.set_ylabel('Mood rating (0-1)')
ax.legend(loc='upper center', bbox_to_anchor=(0.5,-0.25))
xlims = ax.get_xlim()
ax.plot(xlims,[0.5,0.5], color='black', linestyle='dashed')
# Panel B
ax = axes[1]
line_color = sns.color_palette()[4]
ns_color = sns.color_palette('pastel')[0]
sn_color = sns.color_palette('pastel')[3]
sp_color = sns.color_palette('pastel')[2]
glmres['Time'] = glmres['Time']*100 # convert to % mood/min
ax = sns.regplot(x='fracRiskScore', y='Time', data=glmres, scatter=False, line_kws={'color':line_color,
'label': 'Trend'}, ax=ax)
xns = glmres.loc[~glmres.sig,'fracRiskScore']
yns = glmres.loc[~glmres.sig,'Time']
ax.plot(xns, yns, '.', color=ns_color, zorder=-100, label=f'Non-significant\n(n = {len(xns)})')#, markerfacecolor="none")
xsn = glmres.loc[glmres['Time Sign'] == -1, 'fracRiskScore']
ysn = glmres.loc[glmres['Time Sign'] == -1, 'Time']
ax.plot(xsn, ysn, '.', color=sn_color, zorder=-100, label=f'Negative\n(n = {len(xsn)})')#, markerfacecolor="none")
xsp = glmres.loc[glmres['Time Sign'] == 1, 'fracRiskScore']
ysp = glmres.loc[glmres['Time Sign'] == 1, 'Time']
ax.plot(xsp, ysp, '.', color=sp_color, zorder=-100, label=f'Positive\n(n = {len(xsp)})')#, markerfacecolor="none")
xlims = ax.get_xlim()
ylims = ax.get_ylim()
r2_placeholder = Rectangle((0, 0), 1, 1, fc="w", fill=False,
edgecolor='none', linewidth=0)
# ax.plot(xlims, [0,0], 'black')
#ax.plot([1.0, 1.0], ylims, 'black')
ax.set_xticks((1, 2))
ax.set_xlim(xlims)
ax.set_ylim(ylims)
ax.set_ylabel('Mood drift (%mood/min)')
ax.set_xlabel("Depression risk")
ax.get_figure().set_facecolor('white')
handles, labels = ax.get_legend_handles_labels()
handles = [handles[2], handles[0], handles[1]]
labels = [labels[2], labels[0], labels[1]]
handles.append(ax.get_lines()[0])
#handles.append(r2_placeholder)
labels.append('Trend')
#labels.append(f'$r^2$ = {r**2:0.2f}\n$p$ = {rp:0.2g}')
ax.legend(handles, labels, loc='upper center', bbox_to_anchor=(0.5,-0.25))
# panel c
ax =axes[2]
normed = to_plot.groupby('Depression Risk')['Sign of Mood Drift'].value_counts(normalize=True).mul(100).rename('Percent').reset_index()
ax = sns.barplot(y='Percent', x='Sign of Mood Drift', hue='Depression Risk',
data=normed, order=['Pos.', 'Non-sig.', 'Neg.'],
ax=ax)
pct_exp = pt_frs_exp.copy()
pct_exp.loc[False] = pt_frs_exp.loc[False] / pt_frs_exp.sum(1)[False] * 100
pct_exp.loc[True] = pt_frs_exp.loc[True] / pt_frs_exp.sum(1)[True] * 100
expectations = pct_exp.loc[:, [1,0,-1]].values.flatten()
first = True
for pp, exp in zip(ax.patches, expectations):
x = [exp]*2
y = [pp.get_x(), pp.get_x() + pp.get_width()]
if first:
first = False
label = 'Expected'
else:
label = None
ax.plot(y, x, color='black', linestyle='dashed', label=label)
#leg = ax.get_legend()
#leg.set_visible(False)
chi2_placeholder = Rectangle((0, 0), 1, 1, fc="w", fill=False,
edgecolor='none', linewidth=0)
handels, labels = ax.get_legend_handles_labels()
labels = [f'Not at risk\n(n = {(~glmres["Depression Risk"]).sum()})',
f'At risk of depression\n(n = {(glmres["Depression Risk"]).sum()})',
'Expected',
f'$\chi^2$ = {chi2:0.2f}\n$p$ = {p:0.2g}']
handels = [handels[1], handels[2], handels[0], chi2_placeholder]
ax.legend(handels, labels, loc='upper center', bbox_to_anchor=(0.5,-0.25), )
ax.set_ylabel('Participants')
fig.tight_layout(pad=1, h_pad=0.1)
fig.set_facecolor('white')
fig.text(0, 0.95, 'a', weight='bold')
fig.text(0.33, 0.95, 'b', weight='bold')
fig.text(0.66, 0.95, 'c', weight='bold')
outFile = '../Figures/dep_effect'
print(f'Saving figure as {outFile}...')
fig.savefig(f'{outFile}.png', dpi=200,bbox_inches="tight")
fig.savefig(f'{outFile}.pdf')
#frs bucket vs delta mood instead of mood slope
pymer_input['Depression Risk'] = glmres.fracRiskScore >= 1
first_rate = pymer_input.sort_values(['Cohort', 'Subject', 'Time']).groupby(['Cohort', 'Subject'])[['Time', 'Mood', 'fracRiskScore', 'Depression Risk']].first().reset_index()
last_rate = pymer_input.sort_values(['Cohort', 'Subject', 'Time']).groupby(['Cohort', 'Subject'])[['Time', 'Mood']].last().reset_index()
first_and_last = first_rate.merge(last_rate, how='inner', on=['Cohort', 'Subject'], suffixes=['_first', '_last'])
first_and_last['Mood_delta'] = first_and_last.Mood_last - first_and_last.Mood_first
first_and_last['Mood_sign'] = np.sign(first_and_last.Mood_delta)
# look at last mood - first mood delta in addition to slopes
print("Proportion of people with a positive mood delta.")
print(first_and_last.groupby('Depression Risk').Mood_sign.mean())
g = sns.lmplot(x='fracRiskScore', y='Mood_delta', data=first_and_last)
g.fig.savefig('../Figures/fracRiskScore_vs_mooddelta.png')
print("Pearson r between mood delta and frac risk score.")
print(stats.pearsonr(first_and_last.Mood_delta, first_and_last.fracRiskScore))
print("Pearson r between mood delta and frac risk score if you just look at positive slopes.")
print(stats.pearsonr(first_and_last.query("Mood_delta > 0").Mood_delta, first_and_last.query("Mood_delta > 0").fracRiskScore))
print()
pt_frs_obs = first_and_last.groupby(['Depression Risk', 'Mood_sign']).Subject.count().reset_index().pivot(index='Depression Risk',columns='Mood_sign')
print("Positive mood delta vs fractional risk score observed contengency")
print(pt_frs_obs)
print()
chi2, p, dof, expected = stats.chi2_contingency(pt_frs_obs)
print("Positive time slope vs fractional risk score expected contengency")
print(expected)
print(f'chi2_{dof} = {chi2}, p = {p}')