-
Notifications
You must be signed in to change notification settings - Fork 2
/
TestTotalMwHypotheses.py
executable file
·775 lines (654 loc) · 35.8 KB
/
TestTotalMwHypotheses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
TEMP_TestControlHypotheses.py
Test the MW control hypotheses in response to NHB reviewers.
Created on Fri Aug 19 11:16:43 2022
@author: djangraw
"""
# Import packages
import pandas as pd
import numpy as np
from scipy import stats
from sklearn.decomposition import PCA
from matplotlib import pyplot as plt
import seaborn as sns
# Import pymer functions
import CompareTwoLmers as c2l
# Declare file locations
results_dir = '../Data/OutFiles'
figures_dir = '../Figures' # where figures should be saved
use_both_mw = True; # because repeated administration did not affect results (in the emo dimension)
use_both_boredom = False; # because repeated administration DID affect results
# %% Declare functions
# Print effect that a change of 1std would have on mood slope
def PrintEffectOf1StdChange(pymer_input,dfFit_h1,new_factor):
mean_val = np.mean(pymer_input.loc[:,new_factor])
std_val = np.std(pymer_input.loc[:,new_factor])
before = (dfFit_h1.loc['Time','Estimate'] + dfFit_h1.loc[f'Time:{new_factor}','Estimate'] * mean_val) * 100
change = (dfFit_h1.loc[f'Time:{new_factor}','Estimate'] * std_val) * 100
after = before+change
print(f'** An increase in {new_factor} of 1 std ({std_val:.03g}) from the mean ({mean_val:.03g}) \n'+
f'** would change the estimated mood slope by {change:.03g} %mood/min, \n'+
f'** from {before:.03g} to {after:.03g}, a change of {change/before*100:.03g}%.')
# Correlate new factor in fixed-effects pymer model with LME Time factor from reduced model
def PrintFactorSlopeCorrelations(dfFixef_h0,new_factor,factor_name,cohort_name='unknown'):
print('')
print(f'Correlating {factor_name} with LME slope in reduced model:')
lme_slope = dfFixef_h0.Time.values
MakeJointPlot(new_factor,lme_slope,factor_name,'lme_slope',cohort_name=cohort_name)
# r,p = stats.pearsonr(new_factor,lme_slope)
# print(f'Pearson r2={r**2:.3g},p={p:.3g}')
# r_s,p_s = stats.spearmanr(new_factor,lme_slope)
# print(f'Spearman r2={r_s**2:.3g},p={p_s:.3g}')
# print('')
# Get last-mood minus first-mood for each participant in a list
def GetDeltaMood(pymer_input,participants):
# get last-mood minus first-mood
delta_mood = np.zeros(len(participants))
for participant_index, participant in enumerate(participants):
# pull out 1st-vs-last mood
mood = pymer_input.loc[pymer_input.Subject==participant,'Mood'].values
delta_mood[participant_index] = mood[-1]-mood[0]
return delta_mood
def GetBeforeAndAfterBoredom(df_boredom,pymer_input):
# Set up
participants = np.unique(df_boredom.participant)
initial_boredom = np.zeros(len(participants))
final_boredom = np.zeros(len(participants))
delta_boredom = np.zeros(len(participants))
# Loop through subjects
for participant_index,participant in enumerate(participants):
# crop to this participant
df_this = df_boredom.loc[df_boredom.participant==participant,:]
# get change in boredom scores
initial_boredom[participant_index] = np.sum(df_this.loc[df_this.iBlock==-1,'rating']) # after first block
final_boredom[participant_index] = np.sum(df_this.loc[df_this.iBlock==0,'rating']) # after first block
delta_boredom[participant_index] = final_boredom[participant_index] - initial_boredom[participant_index]
# add to pymer_input table
pymer_input.loc[pymer_input.Subject==participant,'initialBoredom'] = initial_boredom[participant_index]
pymer_input.loc[pymer_input.Subject==participant,'finalBoredom'] = final_boredom[participant_index]
pymer_input.loc[pymer_input.Subject==participant,'deltaBoredom'] = delta_boredom[participant_index]
df_summary = pd.DataFrame({'participant':participants,
'initial_boredom':initial_boredom,
'final_boredom':final_boredom,
'delta_boredom':delta_boredom})
return pymer_input,df_summary
# Make a Seaborn joint plot with a regression line, printing stats for each factor and the regression
def MakeJointPlot(stat_a,stat_b,stat_a_name,stat_b_name,cohort_name='unknown'):
print(f'= {stat_a_name}:')
D = np.mean(stat_a)/np.std(stat_a)
print(f' mean={np.mean(stat_a):.3g}, std={np.std(stat_a):.3g}, D={D:.3g}')
t,p = stats.ttest_1samp(stat_a,0)
print(f' 2-sided t-test against 0: t={t:.3g},p={p:.3g}')
print(f'= {stat_b_name}:')
D = np.mean(stat_b)/np.std(stat_b)
print(f' mean={np.mean(stat_b):.3g}, std={np.std(stat_b):.3g}, D={D:.3g}')
t,p = stats.ttest_1samp(stat_b,0)
print(f' {stat_b_name} ~=0: t={t:.3g},p={p:.3g}')
print('= Correlation:')
r,p = stats.pearsonr(stat_a,stat_b)
print(f' Pearson r2={r**2:.3g},p={p:.3g}')
r_s,p_s = stats.spearmanr(stat_a,stat_b)
print(f' Spearman r2={r_s**2:.3g},p={p_s:.3g}')
# Do joint plot
df_stat = pd.DataFrame()
df_stat[stat_a_name] = stat_a
df_stat[stat_b_name] = stat_b
sns.jointplot(x=stat_a_name,y=stat_b_name,data=df_stat,kind="reg")
# annotate plot
plt.suptitle(f'Cohort {cohort_name}: {stat_a_name} vs. {stat_b_name}\n'+
f'r_s^2={r_s**2:.3g},p_s={p_s:.3g}')
plt.tight_layout()
plt.subplots_adjust(top=0.90) # Reduce plot to make room
# save plot
fig_file = f'{figures_dir}/{cohort_name}_{stat_a_name}-vs-{stat_b_name}_jointplot.png'
print(f'=Saving {stat_a_name} vs. {stat_b_name} jointplot as {fig_file}....')
plt.savefig(fig_file)
fig_file = f'{figures_dir}/{cohort_name}_{stat_a_name}-vs-{stat_b_name}_jointplot.pdf'
print(f'=Saving {stat_a_name} vs. {stat_b_name} jointplot as {fig_file}....')
plt.savefig(fig_file)
# Crop to exclude all mood ratings after miniumum rating (for floor effects)
def CropToMinRating(pymer_input):
# get list of subjects
participants = np.unique(pymer_input.Subject)
for participant_index,participant in enumerate(participants):
# crop to this subject's data
df_this = pymer_input.loc[pymer_input.Subject==participant,:]
min_index = np.argmin(df_this['Mood']) # find index of minimum rating
pymer_input = pymer_input.drop(df_this.index[min_index+1:])
return pymer_input
# %% Get MW principal components
print('=======================================')
print('')
print('=======================================')
# print("""
# Mind Wandering Hypotheses:
# 2.1) In the validation of short-interval MDES repeat administration, we
# hypothesize that the effect of including an initial administration will
# have an absolute effect size (cohen’s d) less than 0.5.
# We will test this with two, one-sided t-tests (TOST).
# """)
print('=== MW PCA ===' )
# Get all probes and run PCA
# batch = 'MwBeforeAndAfter' # before-and-after group
batch = 'MwAfterOnly' # after-only group
# Load probes file
in_file = f'{results_dir}/Mmi-{batch}_Probes.csv'
df_mw = pd.read_csv(in_file)
# Extract ratings and center scale at 0
X = df_mw['rating'].values.reshape([-1,13])-0.5
# Fit PCA to these ratings
pca = PCA(n_components=13,whiten=True)
pca.fit(X)
# print(pca.explained_variance_ratio_)
# print(pca.singular_values_)
# make plot of variance explained
fig = plt.figure(23,clear=True)
plt.plot(np.cumsum(pca.explained_variance_ratio_)*100)
plt.xlabel('component')
plt.ylabel('% variance explained')
plt.title('MW probe PCA')
# # Save figure
# fig_file = f'{figures_dir}/{batch}_MwPca_VarExplained.png'
# print(f'Saving figure as {fig_file}...')
# fig.savefig(fig_file)
# === Plot PC loadings
# Set up figure
pc_count = pca.n_components
question_labels = np.array(['task','future','past','myself','people','emotion','images','words','vivid','detailed','habit','evolving','deliberate'])
ticks = np.arange(len(question_labels))
fig,axes = plt.subplots(4,4,num=24,figsize=[12,8],clear=True,sharex=False,sharey=True)
axes = axes.flatten()
# Plot bars of loadings
for plot_index,ax in enumerate(axes):
if plot_index<pc_count:
# make bar plot
ax.bar(ticks,pca.components_[plot_index,:])
# set title
variance_explained = pca.explained_variance_ratio_[plot_index]*100
ax.set_title(f'Comp {plot_index}: varex={variance_explained:.1f}')
# annotate plot
ax.grid(True)
ax.set_xlabel('question')
ax.set_ylabel('loading')
ax.set_xticks(ticks)
ax.set_xticklabels(labels=question_labels,ha='right',rotation=45)
else:
# remove extra plots
ax.set_visible(False)
plt.tight_layout()
# # Save figure
# fig_file = f'{figures_dir}/{batch}_MwPcaLoadings.png'
# print(f'Saving figure as {fig_file}...')
# fig.savefig(fig_file)
# Note the most emotion-related PC
# defined as the one with the largest magnitude loading on the emotion question
emotion_pc_index = np.argmax(np.abs(pca.components_[:,question_labels=='emotion'])) # 4
# print(f'PC #{emotion_pc_index} appears to be emotion component.')
# %% Hyp 2.2: Effect of finalMW on mood
print('=======================================')
print('')
print('=======================================')
# print("""
# 2.2) We hypothesize that the final MDES scores will explain
# variance in subject-level POTD slope. This is a one-sided hypothesis.
# We will test this with an ANOVA comparing the following two mixed effects
# models (difference highlighted in bold):
# H0: Mood ~ 1 + all_finalMwPCs + Time * (isMale + meanIRIOver20 + fracRiskScore + isAge40to100) + (1 + Time|Subject)
# H1: Mood ~ 1 + Time * (all_finalMwPCs + isMale + meanIRIOver20 + fracRiskScore + isAge40to100) + (1 + Time|Subject)
# """)
# If repeat administration changes results, we'll use the after-only group.
# Otherwise, use both.
if use_both_mw:
batch = 'AllMw'
else:
batch = 'MwAfterOnly'
# print(f'=== Batch {batch}: Comparing LME models with and without finalMW ===')
print(f'=== Batch {batch}: Comparing LME models with and without Time:fracRiskScore ===')
in_file = f'{results_dir}/Mmi-{batch}_pymerInput-full.csv'
print(f'Opening {in_file}...')
pymer_input = pd.read_csv(in_file, index_col=0)
anova_res = None
for do_premin_only in [False]:#,True]:
# Control for floor effects
if do_premin_only:
if anova_res.loc[1,'Pr(>Chisq)']<0.05:
print('=======================================\n\n'+
'=======================================')
print('=== 4.2.2: Control for floor effects by using excluding ratings after a subject''s minimum')
# Crop to exclude all mood ratings after miniumum rating (for floor effects)
pymer_input = CropToMinRating(pymer_input)
cohort_name = f'{batch}-premin'
else:
print('=== Skipping floor effects control because original was not significant.')
break
else:
cohort_name = batch
# Add finalEmoDim scores
in_file = f'{results_dir}/Mmi-{batch}_Probes.csv'
print(f'Opening {in_file}...')
df_mw = pd.read_csv(in_file)
participants = np.unique(df_mw.participant)
final_mw = np.zeros(len(participants))
delta_mood = GetDeltaMood(pymer_input,participants)
for participant_index,participant in enumerate(participants):
# crop to this participant
df_this = df_mw.loc[df_mw.participant==participant,:]
# get final MW score
X_this = np.atleast_2d(df_this.loc[df_this.iBlock==0,'rating'])-0.5 # iBlock==0: after first block. -0.5: Move center of scale to 0
# final_mw[participant_index] = pca.transform(X_this)[0,emotion_pc_index]
# Add to pymer_input table
# pymer_input.loc[pymer_input.Subject==participant,'finalEmoDim'] = final_mw[participant_index]
for pc_index in range(pc_count):
final_mw = pca.transform(X_this)[0,pc_index]
pymer_input.loc[pymer_input.Subject==participant,f'finalMwPC{pc_index}'] = final_mw
# Plot stat vs. change in mood
# delta_mood = GetDeltaMood(pymer_input,participants)
# MakeJointPlot(final_mw,delta_mood,'final_mw','delta_mood',cohort_name=cohort_name)
# make PC string
mw_pc_string = 'finalMwPC0'
for pc_index in range(1,pc_count):
mw_pc_string += f' + finalMwPC{pc_index}'
# Fit models and run ANOVA to compare
# lm_string_h0 = 'Mood ~ 1 + Time * (isMale + meanIRIOver20 + fracRiskScore + isAge40to100) + (1 + Time|Subject)'
# lm_string_h0 = f'Mood ~ 1 + Time : ({mw_pc_string}) + Time * (isMale + meanIRIOver20 + fracRiskScore + isAge40to100) + (1 + Time|Subject)'
lm_string_h0 = f'Mood ~ 1 + {mw_pc_string} + Time * (isMale + meanIRIOver20 + fracRiskScore + isAge40to100) + (1 + Time|Subject)'
lm_string_h1 = f'Mood ~ 1 + Time * ({mw_pc_string} + isMale + meanIRIOver20 + fracRiskScore + isAge40to100) + (1 + Time|Subject)'
lm_string_null = 'Mood ~ 1 + (1 + Time|Subject)'
# run anova and print results
anova_res, dfFit_h0, dfFit_h1, dfFixef_h0 = c2l.compare_lmers(pymer_input,lm_string_h0,lm_string_h1,lm_string_null)
c2l.print_comparison_results(batch,pymer_input,lm_string_h0,lm_string_h1,anova_res,dfFit_h0,dfFit_h1)
# correlate new factor with subject LME slopes in reduced model
# PrintFactorSlopeCorrelations(dfFixef_h0,final_mw,'finalEmoDim',cohort_name)
# Print results and fit
if anova_res.loc[1,'Pr(>Chisq)']<0.05:
print('** Final MW content DOES explain added variance in subject-level POTD slope.')
else:
print('** Final MW content does NOT explain added variance in subject-level POTD slope.')
# for pc_index in range(pc_count):
# PrintEffectOf1StdChange(pymer_input,dfFit_h1,f'finalMwPC{pc_index}')
# Print effect that a change of 1std would have on mood slope
# PrintEffectOf1StdChange(pymer_input,dfFit_h1,'finalEmoDim')
# %% Hyp 2.3: Effect of deltaMW on mood
print('=======================================')
print('')
print('=======================================')
# print("""
# 2.3) We hypothesize that the change in MDES scores will explain
# variance in subject-level POTD slope. This is a one-sided hypothesis.
# We will test this with an ANOVA comparing the following two mixed effects
# models (difference highlighted in bold):
# H0: Mood ~ 1 + all_deltaMwPCs + Time * (isMale + meanIRIOver20 + fracRiskScore + isAge40to100) + (1 + Time|Subject)
# H1: Mood ~ 1 + Time * (all_deltaMwPCs + isMale + meanIRIOver20 + fracRiskScore + isAge40to100) + (1 + Time|Subject)
# If we fail to reject the null for hypothesis 2.1 (absolute cohen’s d is
# less than 0.5) we will have to interpret the results of this hypothesis
# with the caveat that it is possible that repeated administration of the
# MDES measure may have altered the results of the subsequent administration.
# """)
# Analyzing change requires before-and-after batch
batch = 'MwBeforeAndAfter'
# print(f'=== Batch {batch}: Comparing LME models with and without deltaEmoDim ===')
print(f'=== Batch {batch}: Comparing LME models with and without Time:fracRiskScore ===')
# Load pymyer input file
in_file = f'{results_dir}/Mmi-{batch}_pymerInput-full.csv'
print(f'Opening {in_file}...')
pymer_input = pd.read_csv(in_file, index_col=0)
anova_res = None
for do_premin_only in [False]:#,True]:
# Control for floor effects
if do_premin_only:
if anova_res.loc[1,'Pr(>Chisq)']<0.05:
print('=======================================\n\n'+
'=======================================')
print('=== 4.2.3: Control for floor effects by using excluding ratings after a subject''s minimum')
# Crop to exclude all mood ratings after miniumum rating (for floor effects)
pymer_input = CropToMinRating(pymer_input)
cohort_name = f'{batch}-premin'
else:
print('=== Skipping floor effects control because original was not significant.')
break
else:
cohort_name = batch
# Add deltaEmoDim scores
in_file = f'{results_dir}/Mmi-{batch}_Probes.csv'
print(f'Opening {in_file}...')
df_mw = pd.read_csv(in_file)
participants = np.unique(df_mw.participant)
initial_mw = np.zeros(len(participants))
final_mw = np.zeros(len(participants))
delta_mw = np.zeros(len(participants))
delta_mood = GetDeltaMood(pymer_input,participants)
for participant_index,participant in enumerate(participants):
# crop to this participant
df_this = df_mw.loc[df_mw.participant==participant,:]
# get initial MW score
X_initial = np.atleast_2d(df_this.loc[df_this.iBlock==-1,'rating'])-0.5 # Before 1st block. Move center of scale to 0
# initial_mw[participant_index] = pca.transform(X_initial)[0,emotion_pc_index]
# get final MW score
X_final = np.atleast_2d(df_this.loc[df_this.iBlock==0,'rating'])-0.5 # After 1st block. Move center of scale to 0
# final_mw[participant_index] = pca.transform(X_final)[0,emotion_pc_index]
for pc_index in range(pc_count):
initial_mw = pca.transform(X_initial)[0,pc_index]
final_mw = pca.transform(X_final)[0,pc_index]
delta_mw = final_mw - initial_mw
pymer_input.loc[pymer_input.Subject==participant,f'deltaMwPC{pc_index}'] = delta_mw
# Add to pymer_input table
# delta_mw[participant_index] = final_mw[participant_index] - initial_mw[participant_index]
# pymer_input.loc[pymer_input.Subject==participant,'deltaEmoDim'] = delta_mw[participant_index]
# Plot stat vs. change in mood
# delta_mood = GetDeltaMood(pymer_input,participants)
# MakeJointPlot(delta_mw,delta_mood,'delta_mw','delta_mood',cohort_name=cohort_name)
# # for completeness, also do initial & final for this group
# MakeJointPlot(initial_mw,delta_mood,'initial_mw','delta_mood',cohort_name=cohort_name)
# MakeJointPlot(final_mw,delta_mood,'final_mw','delta_mood',cohort_name=cohort_name)
# make PC string
mw_pc_string = 'deltaMwPC0'
for pc_index in range(1,pc_count):
mw_pc_string += f' + deltaMwPC{pc_index}'
# Fit models and run ANOVA to compare
# lm_string_h0 = 'Mood ~ 1 + Time * (isMale + meanIRIOver20 + fracRiskScore + isAge40to100) + (1 + Time|Subject)'
# lm_string_h1 = f'Mood ~ 1 + Time * ({mw_pc_string} + isMale + meanIRIOver20 + fracRiskScore + isAge40to100) + (1 + Time|Subject)'
lm_string_h0 = f'Mood ~ 1 + {mw_pc_string} + Time * (isMale + meanIRIOver20 + fracRiskScore + isAge40to100) + (1 + Time|Subject)'
lm_string_h1 = f'Mood ~ 1 + Time * ({mw_pc_string} + isMale + meanIRIOver20 + fracRiskScore + isAge40to100) + (1 + Time|Subject)'
lm_string_null = 'Mood ~ 1 + (1 + Time|Subject)'
# run anova and print results
anova_res, dfFit_h0, dfFit_h1, dfFixef_h0 = c2l.compare_lmers(pymer_input,lm_string_h0,lm_string_h1,lm_string_null)
c2l.print_comparison_results(batch,pymer_input,lm_string_h0,lm_string_h1,anova_res,dfFit_h0,dfFit_h1)
# correlate new factor with subject LME slopes in reduced model
# PrintFactorSlopeCorrelations(dfFixef_h0,delta_mw,'deltaEmoDim',cohort_name)
# Print results and fit
if anova_res.loc[1,'Pr(>Chisq)']<0.05:
print('** Change in MW content DOES explain added variance in subject-level POTD slope.')
else:
print('** Change in MW content does NOT explain added variance in subject-level POTD slope.')
# for pc_index in range(pc_count):
# PrintEffectOf1StdChange(pymer_input,dfFit_h1,f'deltaMwPC{pc_index}')
# Print effect that a change of 1std would have on mood slope
# PrintEffectOf1StdChange(pymer_input,dfFit_h1,'deltaEmoDim')
# %% Hyp 2.4: Effect of traitMW on mood
print('=======================================')
print('')
print('=======================================')
# print("""
# 2.4) We hypothesize that trait mind wandering will explain variance in
# subject-level POTD slope. This is a one-sided hypothesis.
# We will test this with an ANOVA comparing the following two mixed effects
# models (difference highlighted in bold):
# H0: Mood ~ 1 + Time * (isMale + meanIRIOver20 + fracRiskScore + isAge40to100) + (1 + Time|Subject)
# H1: Mood ~ 1 + Time * (traitMW + isMale + meanIRIOver20 + fracRiskScore + isAge40to100) + (1 + Time|Subject)
# """)
# If repeat administration changes results, we'll use the after-only group.
# Otherwise, use both.
if use_both_mw:
batch = 'AllMw'
else:
batch = 'MwAfterOnly'
print(f'=== Batch {batch}: Comparing LME models with and without traitMW ===')
# load pymer input tables
in_file = f'{results_dir}/Mmi-{batch}_pymerInput-full.csv'
print(f'Opening {in_file}...')
pymer_input = pd.read_csv(in_file, index_col=0)
anova_res = None
for do_premin_only in [False,True]:
# Control for floor effects
if do_premin_only:
if anova_res.loc[1,'Pr(>Chisq)']<0.05:
print('=======================================\n\n'+
'=======================================')
print('=== 4.2.4: Control for floor effects by using excluding ratings after a subject''s minimum')
# Crop to exclude all mood ratings after miniumum rating (for floor effects)
pymer_input = CropToMinRating(pymer_input)
cohort_name = f'{batch}-premin'
else:
print('=== Skipping floor effects control because original was not significant.')
break
else:
cohort_name = batch
# Add traitMW scores
in_file = f'{results_dir}/Mmi-{batch}_Survey.csv'
print(f'Opening {in_file}...')
df_mw = pd.read_csv(in_file)
participants = np.unique(df_mw.participant)
trait_mw = np.zeros(len(participants))
delta_mood = GetDeltaMood(pymer_input,participants)
for participant_index,participant in enumerate(participants):
# get trait MW score from table
trait_mw[participant_index] = df_mw.loc[df_mw.participant==participant,'MW'].values[0]
# add to pymer_input table
pymer_input.loc[pymer_input.Subject==participant,'traitMW'] = trait_mw[participant_index]
# Plot stat vs. change in mood
# delta_mood = GetDeltaMood(pymer_input,participants)
# MakeJointPlot(trait_mw,delta_mood,'trait_mw','delta_mood',cohort_name=cohort_name)
# Fit models and run ANOVA to compare
# lm_string_h0 = 'Mood ~ 1 + Time * (isMale + meanIRIOver20 + fracRiskScore + isAge40to100) + (1 + Time|Subject)'
# lm_string_h1 = 'Mood ~ 1 + Time * (finalBoredom + isMale + meanIRIOver20 + fracRiskScore + isAge40to100) + (1 + Time|Subject)'
lm_string_h0 = 'Mood ~ 1 + traitMW + Time * (isMale + meanIRIOver20 + fracRiskScore + isAge40to100) + (1 + Time|Subject)'
lm_string_h1 = 'Mood ~ 1 + Time * (traitMW + isMale + meanIRIOver20 + fracRiskScore + isAge40to100) + (1 + Time|Subject)'
lm_string_null = 'Mood ~ 1 + (1 + Time|Subject)'
# run anova and print results
anova_res, dfFit_h0, dfFit_h1, dfFixef_h0 = c2l.compare_lmers(pymer_input,lm_string_h0,lm_string_h1,lm_string_null)
c2l.print_comparison_results(batch,pymer_input,lm_string_h0,lm_string_h1,anova_res,dfFit_h0,dfFit_h1)
# correlate new factor with subject LME slopes in reduced model
# PrintFactorSlopeCorrelations(dfFixef_h0,trait_mw,'traitMW',cohort_name)
# Print results and fit
if anova_res.loc[1,'Pr(>Chisq)']<0.05:
print('** Trait MW DOES explain added variance in subject-level POTD slope.')
else:
print('** Trait MW does NOT explain added variance in subject-level POTD slope.')
print(dfFit_h1.loc[['Time','traitMW','Time:traitMW']])
# Print effect that a change of 1std would have on mood slope
# PrintEffectOf1StdChange(pymer_input,dfFit_h1,'traitMW')
# %% Hyp 1.2: Effect of finalBoredom on mood
print('=======================================')
print('')
print('=======================================')
# print("""
# 1.2) We hypothesize that final state boredom will explain variance in
# subject-level POTD slope. This is a one-sided hypothesis.
# We will test this with an ANOVA comparing the following two mixed effects
# models (difference highlighted in bold):
# H0: Mood ~ 1 + finalBoredom + Time * (isMale + meanIRIOver20 + fracRiskScore + isAge40to100) + (1 + Time|Subject)
# H1: Mood ~ 1 + Time * (finalBoredom + isMale + meanIRIOver20 + fracRiskScore + isAge40to100) + (1 + Time|Subject)
# """)
# If repeat administration changes results, we'll use the after-only group.
# Otherwise, use both.
if use_both_boredom:
batch = 'AllBoredom'
else:
batch = 'BoredomAfterOnly'
# print(f'=== Batch {batch}: Comparing LME models with and without finalBoredom ===')
print(f'=== Batch {batch}: Comparing LME models with and without Time:fracRiskScore ===')
# Load pymer input file
in_file = f'{results_dir}/Mmi-{batch}_pymerInput-full.csv'
print(f'Opening {in_file}...')
pymer_input = pd.read_csv(in_file, index_col=0)
anova_res = None
for do_premin_only in [False]:#,True]:
# Control for floor effects
if do_premin_only:
if anova_res.loc[1,'Pr(>Chisq)']<0.05:
print('=======================================\n\n'+
'=======================================')
print('=== 4.1.2: Control for floor effects by using excluding ratings after a subject''s minimum')
# Crop to exclude all mood ratings after miniumum rating (for floor effects)
pymer_input = CropToMinRating(pymer_input)
cohort_name = f'{batch}-premin'
else:
print('=== Skipping floor effects control because original was not significant.')
break
else:
cohort_name = batch
# Add finalBoredom scores
in_file = f'{results_dir}/Mmi-{batch}_Probes.csv'
print(f'Opening {in_file}...')
df_boredom = pd.read_csv(in_file)
participants = np.unique(df_boredom.participant)
final_boredom = np.zeros(len(participants))
for participant_index,participant in enumerate(participants):
# crop to this participant
df_this = df_boredom.loc[df_boredom.participant==participant,:]
# get final boredom score
final_boredom[participant_index] = np.sum(df_this.loc[df_this.iBlock==0,'rating']) # after first block
# add to pymer_input table
pymer_input.loc[pymer_input.Subject==participant,'finalBoredom'] = final_boredom[participant_index]
# Plot stat vs. change in mood
delta_mood = GetDeltaMood(pymer_input,participants)
# MakeJointPlot(final_boredom,delta_mood,'final_boredom','delta_mood',cohort_name=cohort_name)
# Fit models and run ANOVA to compare
# lm_string_h0 = 'Mood ~ 1 + Time * (isMale + meanIRIOver20 + fracRiskScore + isAge40to100) + (1 + Time|Subject)'
# lm_string_h1 = 'Mood ~ 1 + Time * (finalBoredom + isMale + meanIRIOver20 + fracRiskScore + isAge40to100) + (1 + Time|Subject)'
lm_string_h0 = 'Mood ~ 1 + finalBoredom + Time * (isMale + meanIRIOver20 + fracRiskScore + isAge40to100) + (1 + Time|Subject)'
lm_string_h1 = 'Mood ~ 1 + Time * (finalBoredom + isMale + meanIRIOver20 + fracRiskScore + isAge40to100) + (1 + Time|Subject)'
lm_string_null = 'Mood ~ 1 + (1 + Time|Subject)'
# run anova and print results
anova_res, dfFit_h0, dfFit_h1, dfFixef_h0 = c2l.compare_lmers(pymer_input,lm_string_h0,lm_string_h1,lm_string_null)
c2l.print_comparison_results(batch,pymer_input,lm_string_h0,lm_string_h1,anova_res,dfFit_h0,dfFit_h1)
# correlate new factor with subject LME slopes in reduced model
# PrintFactorSlopeCorrelations(dfFixef_h0,final_boredom,'finalBoredom',cohort_name)
# Print results and pymer fit
if anova_res.loc[1,'Pr(>Chisq)']<0.05:
print('** Final state boredom DOES explain added variance in subject-level POTD slope.')
else:
print('** Final state boredom does NOT explain added variance in subject-level POTD slope.')
# print(dfFit_h1.loc[['Time','finalBoredom','Time:finalBoredom']])
# Print effect that a change of 1std would have on mood slope
# PrintEffectOf1StdChange(pymer_input,dfFit_h1,'finalBoredom')
# %% Hyp 1.3: Effect of deltaBoredom on mood
print('=======================================')
print('')
print('=======================================')
# print("""
# 1.3) We hypothesize that the change in boredom will explain variance in
# subject-level POTD slope. This is a one-sided hypothesis.
# We will test this with an ANOVA comparing the following two mixed effects
# models (difference highlighted in bold):
# H0: Mood ~ 1 + deltaBoredom + Time * (isMale + meanIRIOver20 + fracRiskScore + isAge40to100) + (1 + Time|Subject)
# H1: Mood ~ 1 + Time * (deltaBoredom + isMale + meanIRIOver20 + fracRiskScore + isAge40to100) + (1 + Time|Subject)
# If we fail to reject the null for hypothesis 1.1 (absolute cohen’s d is less
# than 0.5) we will have to interpret the results of this hypothesis with the
# caveat that it is possible that repeated administration of the state
# boredom measure may have altered the results of the subsequent administration.
# """)
# Analyzing change in boredom requires before-and-after group
batch = 'BoredomBeforeAndAfter'
# print(f'=== Batch {batch}: Comparing LME models with and without deltaBoredom ===')
print(f'=== Batch {batch}: Comparing LME models with and without Time:fracRiskScore ===')
# Load pymer input file
in_file = f'{results_dir}/Mmi-{batch}_pymerInput-full.csv'
print(f'Opening {in_file}...')
pymer_input = pd.read_csv(in_file, index_col=0)
anova_res = None
for do_premin_only in [False]:#,True]:
# Control for floor effects
if do_premin_only:
if anova_res.loc[1,'Pr(>Chisq)']<0.05:
print('=======================================\n\n'+
'=======================================')
print('=== 4.1.3: Control for floor effects by using excluding ratings after a subject''s minimum')
# Crop to exclude all mood ratings after miniumum rating (for floor effects)
pymer_input = CropToMinRating(pymer_input)
cohort_name = f'{batch}-premin'
else:
print('=== Skipping floor effects control because original was not significant.')
break
else:
cohort_name = batch
# Add deltaBoredom scores
in_file = f'{results_dir}/Mmi-{batch}_Probes.csv'
print(f'Opening {in_file}...')
df_boredom = pd.read_csv(in_file)
pymer_input,df_summary = GetBeforeAndAfterBoredom(df_boredom,pymer_input)
# Plot stat vs. change in mood
delta_mood = GetDeltaMood(pymer_input,df_summary['participant'])
# MakeJointPlot(df_summary['delta_boredom'],delta_mood,'delta_boredom','delta_mood',cohort_name=cohort_name)
# for completeness, also do initial & final for this group
# MakeJointPlot(df_summary['initial_boredom'],delta_mood,'initial_boredom','delta_mood',cohort_name=cohort_name)
# MakeJointPlot(df_summary['final_boredom'],delta_mood,'final_boredom','delta_mood',cohort_name=cohort_name)
# Fit models and run ANOVA to compare
# lm_string_h0 = 'Mood ~ 1 + Time * (isMale + meanIRIOver20 + fracRiskScore + isAge40to100) + (1 + Time|Subject)'
# lm_string_h1 = 'Mood ~ 1 + Time * (deltaBoredom + isMale + meanIRIOver20 + fracRiskScore + isAge40to100) + (1 + Time|Subject)'
lm_string_h0 = 'Mood ~ 1 + deltaBoredom + Time * (isMale + meanIRIOver20 + fracRiskScore + isAge40to100) + (1 + Time|Subject)'
lm_string_h1 = 'Mood ~ 1 + Time * (deltaBoredom + isMale + meanIRIOver20 + fracRiskScore + isAge40to100) + (1 + Time|Subject)'
lm_string_null = 'Mood ~ 1 + (1 + Time|Subject)'
# run anova and print results
anova_res, dfFit_h0, dfFit_h1, dfFixef_h0 = c2l.compare_lmers(pymer_input,lm_string_h0,lm_string_h1,lm_string_null)
c2l.print_comparison_results(batch,pymer_input,lm_string_h0,lm_string_h1,anova_res,dfFit_h0,dfFit_h1)
# correlate new factor with subject LME slopes in reduced model
# PrintFactorSlopeCorrelations(dfFixef_h0,df_summary['delta_boredom'],'deltaBoredom',cohort_name)
# Print results and pymer fit
if anova_res.loc[1,'Pr(>Chisq)']<0.05:
print('** Change in state boredom DOES explain added variance in subject-level POTD slope.')
else:
print('** Change in state boredom does NOT explain added variance in subject-level POTD slope.')
# print(dfFit_h1.loc[['Time','deltaBoredom','Time:deltaBoredom']])
# Print effect that a change of 1std would have on mood slope
# PrintEffectOf1StdChange(pymer_input,dfFit_h1,'deltaBoredom')
# %% Hyp 1.4: Effect of traitBoredom on mood
print('=======================================')
print('')
print('=======================================')
# print("""
# 1.4) We hypothesize that trait boredom will explain variance in subject-level
# POTD slope.This is a one-sided hypothesis.
# We will test this with an ANOVA comparing the following two mixed effects
# models (difference highlighted in bold):
# H0: Mood ~ 1 + Time * (isMale + meanIRIOver20 + fracRiskScore + isAge40to100) + (1 + Time|Subject)
# H1: Mood ~ 1 + Time * (traitBoredom + isMale + meanIRIOver20 + fracRiskScore + isAge40to100) + (1 + Time|Subject)
# """)
# If repeat administration changes results, we'll use the after-only group.
# Otherwise, use both.
if use_both_boredom:
batch = 'AllBoredom'
else:
batch = 'BoredomAfterOnly'
print(f'=== Batch {batch}: Comparing LME models with and without traitBoredom ===')
# Load pymer input file
in_file = f'{results_dir}/Mmi-{batch}_pymerInput-full.csv'
print(f'Opening {in_file}...')
pymer_input = pd.read_csv(in_file, index_col=0)
anova_res = None
for do_premin_only in [False,True]:
# Control for floor effects
if do_premin_only:
if anova_res.loc[1,'Pr(>Chisq)']<0.05:
print('=======================================\n\n'+
'=======================================')
print('=== 4.1.4: Control for floor effects by using excluding ratings after a subject''s minimum')
# Crop to exclude all mood ratings after miniumum rating (for floor effects)
pymer_input = CropToMinRating(pymer_input)
cohort_name = f'{batch}-premin'
else:
print('=== Skipping floor effects control because original was not significant.')
break
else:
cohort_name = batch
# Add traitBoredom scores
in_file = f'{results_dir}/Mmi-{batch}_Survey.csv'
print(f'Opening {in_file}...')
df_boredom = pd.read_csv(in_file)
participants = np.unique(df_boredom.participant)
trait_boredom = np.zeros(len(participants))
delta_mood = GetDeltaMood(pymer_input,participants)
for participant_index,participant in enumerate(participants):
trait_boredom[participant_index] = df_boredom.loc[df_boredom.participant==participant,'BORED'].values[0]
pymer_input.loc[pymer_input.Subject==participant,'traitBoredom'] = trait_boredom[participant_index]
# Fit models and run ANOVA to compare
# lm_string_h0 = 'Mood ~ 1 + Time * (isMale + meanIRIOver20 + fracRiskScore + isAge40to100) + (1 + Time|Subject)'
# lm_string_h1 = 'Mood ~ 1 + Time * (deltaBoredom + isMale + meanIRIOver20 + fracRiskScore + isAge40to100) + (1 + Time|Subject)'
lm_string_h0 = 'Mood ~ 1 + traitBoredom + Time * (isMale + meanIRIOver20 + fracRiskScore + isAge40to100) + (1 + Time|Subject)'
lm_string_h1 = 'Mood ~ 1 + Time * (traitBoredom + isMale + meanIRIOver20 + fracRiskScore + isAge40to100) + (1 + Time|Subject)'
lm_string_null = 'Mood ~ 1 + (1 + Time|Subject)'
# run anova and print results
anova_res, dfFit_h0, dfFit_h1, dfFixef_h0 = c2l.compare_lmers(pymer_input,lm_string_h0,lm_string_h1,lm_string_null)
c2l.print_comparison_results(batch,pymer_input,lm_string_h0,lm_string_h1,anova_res,dfFit_h0,dfFit_h1)
# correlate new factor with subject LME slopes in reduced model
# PrintFactorSlopeCorrelations(dfFixef_h0,trait_boredom,'traitBoredom',cohort_name)
# Print results and pymer fit
if anova_res.loc[1,'Pr(>Chisq)']<0.05:
print('** Trait boredom DOES explain added variance in subject-level POTD slope.')
else:
print('** Trait boredom does NOT explain added variance in subject-level POTD slope.')
print(dfFit_h1.loc[['Time','traitBoredom','Time:traitBoredom']])
# Print effect that a change of 1std would have on mood slope
# PrintEffectOf1StdChange(pymer_input,dfFit_h1,'traitBoredom')