-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtorch_fizz_vec.py
89 lines (74 loc) · 2.55 KB
/
torch_fizz_vec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import time
import torch
class TorchFizzBuzzVec(torch.nn.Module):
def __init__(self):
super(TorchFizzBuzzVec, self).__init__()
def forward(self, n: torch.Tensor):
x = torch.arange(n)
ones = torch.ones(n)
zeros = torch.zeros(n)
fizzbuzz = torch.sum(torch.where(x % 6 == 0, ones, zeros)).unsqueeze(0)
buzz = torch.sum(torch.where((x % 3 == 0) & (x % 6 != 0), ones, zeros)).unsqueeze(0)
fizz = torch.sum(torch.where((x % 2 == 0) & (x % 6 != 0), ones, zeros)).unsqueeze(0)
return torch.stack([fizz, buzz, fizzbuzz])
class PyFizzBuzz:
def model(self, n):
fizz = 0
buzz = 0
fizzbuzz = 0
for i in range(n):
if i % 6 == 0:
fizzbuzz += 1
elif i % 3 == 0:
buzz += 1
elif i % 2 == 0:
fizz += 1
return [fizz, buzz, fizzbuzz]
torch.no_grad()
COUNT = 100000
n = torch.tensor(COUNT, dtype=torch.int32)
print("Saving PyTorch vectorized model.")
mod = TorchFizzBuzzVec()
# Convert to code
jit_script = torch.jit.script(mod)
print(jit_script)
print(jit_script.code)
torch.jit.save(jit_script, '/tmp/fizzbuzz_vec.pyt')
mod = TorchFizzBuzzVec()
mod.eval()
start_ns = time.perf_counter_ns()
result = mod.forward(n)
end_ns = time.perf_counter_ns()
print("Result: ", result)
print("Time (PyTorch vectorized) (ms): ", (end_ns - start_ns)/1e6)
mod = TorchFizzBuzzVec()
mod.eval()
with torch.jit.optimized_execution(True):
start_ns = time.perf_counter_ns()
result = mod.forward(n)
end_ns = time.perf_counter_ns()
print("Result: ", result)
print("Time (PyTorch vectorized, optimized=True) (ms): ", (end_ns - start_ns)/1e6)
mod = TorchFizzBuzzVec()
mod.eval()
with torch.jit.optimized_execution(False):
start_ns = time.perf_counter_ns()
result = mod.forward(n)
end_ns = time.perf_counter_ns()
print("Result: ", result)
print("Time (PyTorch vectorized, optimized=False) (ms): ", (end_ns - start_ns)/1e6)
print("Loading PyTorch model.")
loaded_module = torch.jit.load('/tmp/fizzbuzz_vec.pyt')
loaded_module.eval()
start_ns = time.perf_counter_ns()
result = loaded_module.forward(n)
end_ns = time.perf_counter_ns()
print("Result: ", result)
print("Time (PyTorch vectorized from Loaded) (ms): ", (end_ns - start_ns)/1e6)
pymod = PyFizzBuzz()
perf_counter_ns_start = time.perf_counter_ns()
result = pymod.model(COUNT)
perf_counter_ns_end = time.perf_counter_ns()
time_taken_ns = perf_counter_ns_end - perf_counter_ns_start
print('Result: ', result)
print('Time taken (Python3) (ms): ', time_taken_ns / 1e6)