-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtraining_utils.py
99 lines (83 loc) · 3.89 KB
/
training_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import torch
import numpy as np
from scipy.stats import truncnorm
import metric.pytorch_ssim as pytorch_ssim
from torch.nn import functional as F
from PIL import Image
import torchvision
#img_path2tensor
loader = torchvision.transforms.Compose([torchvision.transforms.ToTensor()])
def imgPath2loader(image_name,size):
image = Image.open(image_name).convert('RGB')
image = image.resize((size,size))
image = loader(image)#.unsqueeze(0)
return image.to(torch.float)
def get_parameter_number(net):
total_num = sum(p.numel() for p in net.parameters())
trainable_num = sum(p.numel() for p in net.parameters() if p.requires_grad)
return {'Total': total_num, 'Trainable': trainable_num}
def get_para_GByte(parameter_number):
x=parameter_number['Total']*8/1024/1024/1024
y=parameter_number['Total']*8/1024/1024/1024
return {'Total_GB': x, 'Trainable_BG': y}
def one_hot(x, class_count=1000):
# 第一构造一个[class_count, class_count]的对角线为1的向量
# 第二保留label对应的行并返回
return torch.eye(class_count)[x,:]
def truncated_noise_sample(batch_size=1, dim_z=128, truncation=1., seed=None):
""" Create a truncated noise vector.
Params:
batch_size: batch size.
dim_z: dimension of z
truncation: truncation value to use
seed: seed for the random generator
Output:
array of shape (batch_size, dim_z)
"""
state = None if seed is None else np.random.RandomState(seed)
values = truncnorm.rvs(-2, 2, size=(batch_size, dim_z), random_state=state).astype(np.float32)
return truncation * values
def set_seed(seed): #随机数设置
np.random.seed(seed)
#random.seed(seed)
torch.manual_seed(seed) # cpu
torch.cuda.manual_seed_all(seed) # gpu
torch.backends.cudnn.deterministic = True
#torch.backends.cudnn.benchmark = False
def space_loss(imgs1,imgs2,image_space=True,lpips_model=None):
loss_mse = torch.nn.MSELoss()
loss_kl = torch.nn.KLDivLoss()
ssim_loss = pytorch_ssim.SSIM()
loss_lpips = lpips_model
imgs1 = imgs1.contiguous()
imgs2 = imgs2.contiguous()
loss_imgs_mse_1 = loss_mse(imgs1,imgs2)
loss_imgs_mse_2 = loss_mse(imgs1.mean(),imgs2.mean())
loss_imgs_mse_3 = loss_mse(imgs1.std(),imgs2.std())
loss_imgs_mse = loss_imgs_mse_1 #+ loss_imgs_mse_2 + loss_imgs_mse_3
imgs1_kl, imgs2_kl = torch.nn.functional.softmax(imgs1),torch.nn.functional.softmax(imgs2)
loss_imgs_kl = loss_kl(torch.log(imgs2_kl),imgs1_kl) #D_kl(True=y1_imgs||Fake=y2_imgs)
loss_imgs_kl = torch.where(torch.isnan(loss_imgs_kl),torch.full_like(loss_imgs_kl,0), loss_imgs_kl)
loss_imgs_kl = torch.where(torch.isinf(loss_imgs_kl),torch.full_like(loss_imgs_kl,1), loss_imgs_kl)
imgs1_cos = imgs1.view(-1)
imgs2_cos = imgs2.view(-1)
loss_imgs_cosine = 1 - imgs1_cos.dot(imgs2_cos)/(torch.sqrt(imgs1_cos.dot(imgs1_cos))*torch.sqrt(imgs2_cos.dot(imgs2_cos))) #[-1,1],-1:反向相反,1:方向相同
if imgs1.view(-1).shape[0] != imgs2.view(-1).shape[0]:
print('error: vector1 dimentions are not equal to vector2 dimentions')
return
if image_space:
while imgs1.shape[2] > 256:
imgs1 = F.avg_pool2d(imgs1,2,2)
imgs2 = F.avg_pool2d(imgs2,2,2)
if image_space:
ssim_value = pytorch_ssim.ssim(imgs1, imgs2) # while ssim_value<0.999:
loss_imgs_ssim = 1-ssim_loss(imgs1, imgs2)
else:
loss_imgs_ssim = torch.tensor(0)
if image_space:
loss_imgs_lpips = loss_lpips(imgs1,imgs2).mean()
else:
loss_imgs_lpips = torch.tensor(0)
loss_imgs = 5*loss_imgs_mse + 3*loss_imgs_cosine + loss_imgs_ssim + 2*loss_imgs_lpips # loss_imgs_kl
loss_info = [[loss_imgs_mse_1.item(),loss_imgs_mse_2.item(),loss_imgs_mse_3.item()], loss_imgs_kl.item(), loss_imgs_cosine.item(), loss_imgs_ssim.item(), loss_imgs_lpips.item()]
return loss_imgs, loss_info