-
Notifications
You must be signed in to change notification settings - Fork 0
/
real-time-audio.py
132 lines (111 loc) · 3.85 KB
/
real-time-audio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import numpy as np
import time
import cv2
import os
import imutils
import subprocess
from gtts import gTTS
from pydub import AudioSegment
AudioSegment.converter = "C:/Users/jasonyip184/Desktop/yolo-object-detection/ffmpeg-20181202-72b047a-win64-static/bin/ffmpeg.exe"
# load the COCO class labels our YOLO model was trained on
LABELS = open("yolo-coco/coco.names").read().strip().split("\n")
# load our YOLO object detector trained on COCO dataset (80 classes)
print("[INFO] loading YOLO from disk...")
net = cv2.dnn.readNetFromDarknet("yolo-coco/yolov3.cfg", "yolo-coco/yolov3.weights")
# determine only the *output* layer names that we need from YOLO
ln = net.getLayerNames()
ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()]
# initialize
cap = cv2.VideoCapture(0)
frame_count = 0
start = time.time()
first = True
frames = []
while True:
frame_count += 1
# Capture frame-by-frameq
ret, frame = cap.read()
frame = cv2.flip(frame,1)
frames.append(frame)
if frame_count == 300:
break
if ret:
key = cv2.waitKey(1)
if frame_count % 60 == 0:
end = time.time()
# grab the frame dimensions and convert it to a blob
(H, W) = frame.shape[:2]
# construct a blob from the input image and then perform a forward
# pass of the YOLO object detector, giving us our bounding boxes and
# associated probabilities
blob = cv2.dnn.blobFromImage(frame, 1 / 255.0, (416, 416),
swapRB=True, crop=False)
net.setInput(blob)
layerOutputs = net.forward(ln)
# initialize our lists of detected bounding boxes, confidences, and
# class IDs, respectively
boxes = []
confidences = []
classIDs = []
centers = []
# loop over each of the layer outputs
for output in layerOutputs:
# loop over each of the detections
for detection in output:
# extract the class ID and confidence (i.e., probability) of
# the current object detection
scores = detection[5:]
classID = np.argmax(scores)
confidence = scores[classID]
# filter out weak predictions by ensuring the detected
# probability is greater than the minimum probability
if confidence > 0.5:
# scale the bounding box coordinates back relative to the
# size of the image, keeping in mind that YOLO actually
# returns the center (x, y)-coordinates of the bounding
# box followed by the boxes' width and height
box = detection[0:4] * np.array([W, H, W, H])
(centerX, centerY, width, height) = box.astype("int")
# use the center (x, y)-coordinates to derive the top and
# and left corner of the bounding box
x = int(centerX - (width / 2))
y = int(centerY - (height / 2))
# update our list of bounding box coordinates, confidences,
# and class IDs
boxes.append([x, y, int(width), int(height)])
confidences.append(float(confidence))
classIDs.append(classID)
centers.append((centerX, centerY))
# apply non-maxima suppression to suppress weak, overlapping bounding
# boxes
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.3)
texts = []
# ensure at least one detection exists
if len(idxs) > 0:
# loop over the indexes we are keeping
for i in idxs.flatten():
# find positions
centerX, centerY = centers[i][0], centers[i][1]
if centerX <= W/3:
W_pos = "left "
elif centerX <= (W/3 * 2):
W_pos = "center "
else:
W_pos = "right "
if centerY <= H/3:
H_pos = "top "
elif centerY <= (H/3 * 2):
H_pos = "mid "
else:
H_pos = "bottom "
texts.append(H_pos + W_pos + LABELS[classIDs[i]])
print(texts)
if texts:
description = ', '.join(texts)
tts = gTTS(description, lang='en')
tts.save('tts.mp3')
tts = AudioSegment.from_mp3("tts.mp3")
subprocess.call(["ffplay", "-nodisp", "-autoexit", "tts.mp3"])
cap.release()
cv2.destroyAllWindows()
os.remove("tts.mp3")