-
Notifications
You must be signed in to change notification settings - Fork 0
/
post-audio-video.py
177 lines (153 loc) · 5.33 KB
/
post-audio-video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import numpy as np
import time
import cv2
import os
import imutils
import subprocess
from gtts import gTTS
from pydub import AudioSegment
AudioSegment.converter = "C:/Users/jasonyip184/Desktop/yolo-object-detection/ffmpeg-20181202-72b047a-win64-static/bin/ffmpeg.exe"
# load the COCO class labels our YOLO model was trained on
LABELS = open("yolo-coco/coco.names").read().strip().split("\n")
# initialize a list of colors to represent each possible class label
np.random.seed(42)
COLORS = np.random.randint(0, 255, size=(len(LABELS), 3),
dtype="uint8")
# load our YOLO object detector trained on COCO dataset (80 classes)
# and determine only the *output* layer names that we need from YOLO
print("[INFO] loading YOLO from disk...")
net = cv2.dnn.readNetFromDarknet("yolo-coco/yolov3.cfg", "yolo-coco/yolov3.weights")
ln = net.getLayerNames()
ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()]
# initialize the video stream, pointer to output video file, and
# frame dimensions
vs = cv2.VideoCapture("in.mp4")
first = True
detected = []
# initialize our video writer
fourcc = cv2.VideoWriter_fourcc(*"MJPG")
writer = cv2.VideoWriter("video.avi", fourcc, 30, (1280, 720), True)
frame_count = 0
# loop over frames from the video file stream
while True:
print(frame_count)
frame_count += 1
# read the next frame from the file
(grabbed, frame) = vs.read()
frame = cv2.flip(frame,1)
# if the frame was not grabbed, then we have reached the end
# of the stream
if not grabbed:
break
if frame_count % 2 == 0:
(H, W) = frame.shape[:2]
# construct a blob from the input frame and then perform a forward
# pass of the YOLO object detector, giving us our bounding boxes
# and associated probabilities
blob = cv2.dnn.blobFromImage(frame, 1 / 255.0, (416, 416),
swapRB=True, crop=False)
net.setInput(blob)
start = time.time()
layerOutputs = net.forward(ln)
# initialize our lists of detected bounding boxes, confidences,
# and class IDs, respectively
boxes = []
confidences = []
classIDs = []
centers = []
# loop over each of the layer outputs
for output in layerOutputs:
# loop over each of the detections
for detection in output:
# extract the class ID and confidence (i.e., probability)
# of the current object detection
scores = detection[5:]
classID = np.argmax(scores)
confidence = scores[classID]
# filter out weak predictions by ensuring the detected
# probability is greater than the minimum probability
if confidence > 0.5:
# scale the bounding box coordinates back relative to
# the size of the image, keeping in mind that YOLO
# actually returns the center (x, y)-coordinates of
# the bounding box followed by the boxes' width and
# height
box = detection[0:4] * np.array([W, H, W, H])
(centerX, centerY, width, height) = box.astype("int")
# use the center (x, y)-coordinates to derive the top
# and and left corner of the bounding box
x = int(centerX - (width / 2))
y = int(centerY - (height / 2))
# update our list of bounding box coordinates,
# confidences, and class IDs
boxes.append([x, y, int(width), int(height)])
confidences.append(float(confidence))
classIDs.append(classID)
centers.append((centerX, centerY))
# apply non-maxima suppression to suppress weak, overlapping
# bounding boxes
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.3)
texts = []
# ensure at least one detection exists
if len(idxs) > 0:
# loop over the indexes we are keeping
for i in idxs.flatten():
# extract the bounding box coordinates
(x, y) = (boxes[i][0], boxes[i][1])
(w, h) = (boxes[i][2], boxes[i][3])
# draw a bounding box rectangle and label on the frame
color = [int(c) for c in COLORS[classIDs[i]]]
cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2)
text = "{}: {:.4f}".format(LABELS[classIDs[i]],
confidences[i])
cv2.putText(frame, text, (x, y - 5),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
if frame_count % 30 == 0:
label = LABELS[classIDs[i]]
if label not in detected:
# find positions
centerX, centerY = centers[i][0], centers[i][1]
if centerX <= W/3:
W_pos = "left "
elif centerX <= (W/3 * 2):
W_pos = "center "
else:
W_pos = "right "
if centerY <= H/3:
H_pos = "top "
elif centerY <= (H/3 * 2):
H_pos = "mid "
else:
H_pos = "bottom "
texts.append(H_pos + W_pos + label)
detected.append(label)
if frame_count % 30 == 0:
if len(texts) > 0:
silence = AudioSegment.silent(duration=0.01*1000)
description = ', '.join(texts)
tts = gTTS(description, lang='en')
tts.save('tts.mp3')
tts = AudioSegment.from_mp3("tts.mp3")
if first:
audio = tts
else:
audio = AudioSegment.from_mp3("audio.mp3")
audio = audio + silence + tts
else:
silence = AudioSegment.silent(duration=1*1000)
if first:
audio = silence
else:
audio = AudioSegment.from_mp3("audio.mp3")
audio = audio + silence
audio.export("audio.mp3", format="mp3")
first = False
# write the output frame to disk
writer.write(frame)
# release the file pointers
writer.release()
vs.release()
cv2.destroyAllWindows()
os.remove("tts.mp3")
cmd = 'ffmpeg -i video.avi -i audio.mp3 -c copy output.mp4'
subprocess.call(cmd, shell=True)