-
Notifications
You must be signed in to change notification settings - Fork 0
/
ridgeSurface.R
87 lines (79 loc) · 3.15 KB
/
ridgeSurface.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
if(!require(lattice)) { install.packages("lattice"); library(lattice) }
if(!require(mvtnorm)) { install.packages("mvtnorm"); library(mvtnorm) }
if(!require(numDeriv)) { install.packages("numDeriv"); library(numDeriv) }
if(!require(ellipse)) { install.packages("ellipse"); library(ellipse) }
if(!require(grDevices)) { install.packages("grDevices"); library(grDevices) }
if(!require(wesanderson)) { install.packages("wesanderson"); library(wesanderson) }
plotTrajectory <- function (start) {
current_gen = start
polygon(ellipse(0.1, centre = current_gen, level = 0.3), col = wes_palette("Royal1")[1])
segments(current_gen[1] - v1[1], current_gen[2] - v1[2],
current_gen[1] + v1[1], current_gen[2] + v1[2], lwd = 2)
segments(current_gen[1] - v2[1], current_gen[2] - v2[2],
current_gen[1] + v2[1], current_gen[2] + v2[2], lwd = 2)
points(current_gen[1], current_gen[2], pch = 19)
net_beta = c(0, 0)
for(i in 1:gen){
beta = grad(W_bar, t(current_gen))
net_beta = net_beta + beta
next_gen = current_gen + G%*%beta
#arrows(current_gen[1], current_gen[2],
# next_gen[1], next_gen[2], pch = 18, length = 0.14, lwd = 2.5, col = "black")
#arrows(current_gen[1], current_gen[2],
# current_gen[1] + beta[1]/5, current_gen[2] + beta[2]/5,
# pch = 18, length = 0.14, lwd = 3, col = wes_palette("Rushmore")[3])
current_gen = next_gen
}
arrows(start[1], start[2],
start[1] + net_beta[1]/5, start[2] + net_beta[2]/5,
pch = 18, length = 0.14, lwd = 2.5, col = wes_palette("FantasticFox")[5])
net_delta = G %*% net_beta
arrows(start[1], start[2],
start[1] + net_delta[1], start[2] + net_delta[2],
pch = 18, length = 0.14, lwd = 2.5, col = 'black')
}
#w_cov = matrix(c(1, 0.7, 0.7, 1), ncol = 2)
w_cov = 1.3
G = matrix(c(1, 0.1, 0.1, 1)/2, ncol = 2)
es = eigen(cov2cor(G))$values
v1 = sqrt(es[1])/1.2 * eigen(cov2cor(G))$vectors[,1]
v2 = sqrt(es[2])/1.2 * eigen(cov2cor(G))$vectors[,2]
gen = 3
W_bar = function(x) {
a = 0.5
b = 5
# a * x -1 * y + b = 0
dist = (a * x[1] - x[2] + b)/sqrt(a*a + 1)
log(dnorm(dist, mean = 0, sd = w_cov))
}
step = 0.1
x <- seq(-1.5, 8.5, step) ## valores para mu
y <- seq(-1.5, 8.5, step)
X <- as.matrix( expand.grid(x, y))
colnames(X) <- c("mu","var")
Z <- vector()
for(i in 1:nrow(X)){
Z[i] <- W_bar(c(X[i,1], X[i,2]))
}
Z = exp(Z - log(sum(exp(Z))))
b <- matrix(Z, length(x))
mypalette = colorRampPalette(c("white", wes_palette(10, name = "Zissou", type = "continuous"), "darkred"))
png("ridgelandscape_uncorrelated.png", width = 1080, height = 900)
filled.contour(x, y, z = b, color.palette = mypalette,
plot.axes = {
axis(1);
axis(2);
plotTrajectory(c(2,0))
}
)
dev.off(dev.cur())
mypalette = colorRampPalette(c("white", wes_palette(10, name = "Zissou", type = "continuous"), "darkred"))
png("ridgelandscape_uncorrelated.png", width = 1080, height = 900)
filled.contour(x, y, z = b, color.palette = mypalette,
plot.axes = {
axis(1);
axis(2);
plotTrajectory(c(2,0))
}
)
dev.off(dev.cur())