forked from hsd1503/resnet1d
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_physionet_regnet1d.py
165 lines (139 loc) · 6.2 KB
/
test_physionet_regnet1d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
"""
test on physionet data
The search stratagy is based on:
Radosavovic, I., Kosaraju, R. P., Girshick, R., He, K., & Dollár, P. (2020).
Designing Network Design Spaces. Retrieved from http://arxiv.org/abs/2003.13678
Shenda Hong, Apr 2020
"""
import numpy as np
from collections import Counter
from tqdm import tqdm
from matplotlib import pyplot as plt
from sklearn.metrics import classification_report, confusion_matrix
from util import read_data_physionet_2, read_data_physionet_4, preprocess_physionet, read_data_physionet_4_with_val
from net1d import Net1D, MyDataset
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import DataLoader
from tensorboardX import SummaryWriter
from torchsummary import summary
def run_exp(base_filters, filter_list, m_blocks_list):
dataset = MyDataset(X_train, Y_train)
dataset_val = MyDataset(X_test, Y_test)
dataset_test = MyDataset(X_test, Y_test)
dataloader = DataLoader(dataset, batch_size=batch_size)
dataloader_val = DataLoader(dataset_val, batch_size=batch_size, drop_last=False)
dataloader_test = DataLoader(dataset_test, batch_size=batch_size, drop_last=False)
# make model
device_str = "cuda"
device = torch.device(device_str if torch.cuda.is_available() else "cpu")
model = Net1D(
in_channels=1,
base_filters=base_filters,
ratio=1.0,
filter_list=filter_list,
m_blocks_list=m_blocks_list,
kernel_size=16,
stride=2,
groups_width=16,
verbose=False,
n_classes=4)
model.to(device)
summary(model, (X_train.shape[1], X_train.shape[2]), device=device_str)
# train and test
optimizer = optim.Adam(model.parameters(), lr=1e-3, weight_decay=1e-3)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10)
loss_func = torch.nn.CrossEntropyLoss()
n_epoch = 50
step = 0
for _ in tqdm(range(n_epoch), desc="epoch", leave=False):
# train
model.train()
prog_iter = tqdm(dataloader, desc="Training", leave=False)
for batch_idx, batch in enumerate(prog_iter):
input_x, input_y = tuple(t.to(device) for t in batch)
pred = model(input_x)
loss = loss_func(pred, input_y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
step += 1
writer.add_scalar('Loss/train', loss.item(), step)
if is_debug:
break
scheduler.step(_)
# val
model.eval()
prog_iter_val = tqdm(dataloader_val, desc="Validation", leave=False)
all_pred_prob = []
with torch.no_grad():
for batch_idx, batch in enumerate(prog_iter_val):
input_x, input_y = tuple(t.to(device) for t in batch)
pred = model(input_x)
all_pred_prob.append(pred.cpu().data.numpy())
all_pred_prob = np.concatenate(all_pred_prob)
all_pred = np.argmax(all_pred_prob, axis=1)
## vote most common
final_pred = []
final_gt = []
for i_pid in np.unique(pid_val):
tmp_pred = all_pred[pid_val==i_pid]
tmp_gt = Y_val[pid_val==i_pid]
final_pred.append(Counter(tmp_pred).most_common(1)[0][0])
final_gt.append(Counter(tmp_gt).most_common(1)[0][0])
## classification report
tmp_report = classification_report(final_gt, final_pred, output_dict=True)
print(confusion_matrix(final_gt, final_pred))
f1_score = (tmp_report['0']['f1-score'] + tmp_report['1']['f1-score'] + tmp_report['2']['f1-score'] + tmp_report['3']['f1-score'])/4
writer.add_scalar('F1/f1_score', f1_score, _)
writer.add_scalar('F1/label_0', tmp_report['0']['f1-score'], _)
writer.add_scalar('F1/label_1', tmp_report['1']['f1-score'], _)
writer.add_scalar('F1/label_2', tmp_report['2']['f1-score'], _)
writer.add_scalar('F1/label_3', tmp_report['3']['f1-score'], _)
# test
model.eval()
prog_iter_test = tqdm(dataloader_test, desc="Testing", leave=False)
all_pred_prob = []
with torch.no_grad():
for batch_idx, batch in enumerate(prog_iter_test):
input_x, input_y = tuple(t.to(device) for t in batch)
pred = model(input_x)
all_pred_prob.append(pred.cpu().data.numpy())
all_pred_prob = np.concatenate(all_pred_prob)
all_pred = np.argmax(all_pred_prob, axis=1)
## vote most common
final_pred = []
final_gt = []
for i_pid in np.unique(pid_test):
tmp_pred = all_pred[pid_test==i_pid]
tmp_gt = Y_test[pid_test==i_pid]
final_pred.append(Counter(tmp_pred).most_common(1)[0][0])
final_gt.append(Counter(tmp_gt).most_common(1)[0][0])
## classification report
tmp_report = classification_report(final_gt, final_pred, output_dict=True)
print(confusion_matrix(final_gt, final_pred))
f1_score = (tmp_report['0']['f1-score'] + tmp_report['1']['f1-score'] + tmp_report['2']['f1-score'] + tmp_report['3']['f1-score'])/4
writer.add_scalar('F1/f1_score', f1_score, _)
writer.add_scalar('F1/label_0', tmp_report['0']['f1-score'], _)
writer.add_scalar('F1/label_1', tmp_report['1']['f1-score'], _)
writer.add_scalar('F1/label_2', tmp_report['2']['f1-score'], _)
writer.add_scalar('F1/label_3', tmp_report['3']['f1-score'], _)
if __name__ == "__main__":
batch_size = 32
is_debug = False
if is_debug:
writer = SummaryWriter('/nethome/shong375/log/regnet/challenge2017/debug')
else:
writer = SummaryWriter('/nethome/shong375/log/regnet/challenge2017/first')
# make data, (sample, channel, length)
X_train, X_val, X_test, Y_train, Y_val, Y_test, pid_val, pid_test = read_data_physionet_4_with_val()
print(X_train.shape, Y_train.shape)
base_filters = 64
filter_list=[64,160,160,400,400,1024,1024]
m_blocks_list=[2,2,2,3,3,4,4]
run_exp(
base_filters=base_filters,
filter_list=filter_list,
m_blocks_list=m_blocks_list)