This repository hosts the training code for the research detailed in the following paper:
@ARTICLE{10574847,
author={Ding, Junran and He, Yunxiang and Yuan, Binzhe and Yuan, Zhechen and Zhou, Pingqiang and Yu, Jingyi and Lou, Xin},
journal={IEEE Transactions on Circuits and Systems for Video Technology},
title={Ray Reordering for Hardware-Accelerated Neural Volume Rendering},
year={2024},
volume={},
number={},
pages={1-1},
keywords={Rendering (computer graphics);Hardware;Image color analysis;Casting;Neural networks;Parallel processing;Interpolation;Neural Volume Rendering (NVR);Ray Reordering;Cache Locality;Hardware Accelerator},
doi={10.1109/TCSVT.2024.3419761}}
sudo apt-get install build-essential git python3-dev python3-pip libopenexr-dev libxi-dev \
libglfw3-dev libglew-dev libomp-dev libxinerama-dev libxcursor-dev pybind11-dev libeigen3-dev
git clone https://github.com/dingjr7/rr-nerf.git
cd rr-nerf
git submodule sync --recursive
git submodule update --init --recursive
conda env create --file environment.yml
conda activate rr
Modify dataset_dir to nerf_synthetic dataset.
python train_envr.py