forked from snap-stanford/UCE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
115 lines (87 loc) · 3.85 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
"""
Model class
"""
import warnings
warnings.filterwarnings("ignore")
import math
from torch import nn, Tensor
from torch.nn import TransformerEncoder, TransformerEncoderLayer
import sys
sys.path.append('../')
from typing import Any
import torch
def full_block(in_features, out_features, p_drop=0.1):
return nn.Sequential(
nn.Linear(in_features, out_features, bias=True),
nn.LayerNorm(out_features),
nn.GELU(),
nn.Dropout(p=p_drop),
)
class PositionalEncoding(nn.Module):
def __init__(self, d_model: int, dropout: float = 0.1, max_len: int = 1536):
super().__init__()
self.dropout = nn.Dropout(p=dropout)
position = torch.arange(max_len).unsqueeze(1)
div_term = torch.exp \
(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
pe = torch.zeros(max_len, 1, d_model)
pe[:, 0, 0::2] = torch.sin(position * div_term)
pe[:, 0, 1::2] = torch.cos(position * div_term)
self.register_buffer('pe', pe)
def forward(self, x: Tensor) -> Tensor:
"""
Args:
x: Tensor, shape [seq_len, batch_size, embedding_dim]
"""
x = x + self.pe[:x.size(0)]
return self.dropout(x)
class TransformerModel(nn.Module):
def __init__(self, token_dim: int, d_model: int, nhead: int, d_hid: int,
nlayers: int, output_dim:int, dropout: float = 0.05):
super().__init__()
self.model_type = 'Transformer'
self.pos_encoder = PositionalEncoding(d_model, dropout)
self.d_model = d_model
self.encoder = nn.Sequential(nn.Linear(token_dim, d_model),
nn.GELU(),
nn.LayerNorm(d_model))
encoder_layers = TransformerEncoderLayer(d_model, nhead, d_hid, dropout)
self.transformer_encoder = TransformerEncoder(encoder_layers, nlayers)
self.d_model = d_model
self.dropout = dropout
self.decoder = nn.Sequential(full_block(d_model, 1024, self.dropout),
full_block(1024, output_dim, self.dropout),
full_block(output_dim, output_dim, self.dropout),
nn.Linear(output_dim, output_dim)
)
self.binary_decoder = nn.Sequential(
full_block(output_dim + 1280, 2048, self.dropout),
full_block(2048, 512, self.dropout),
full_block(512, 128, self.dropout),
nn.Linear(128, 1)
)
self.gene_embedding_layer = nn.Sequential(nn.Linear(token_dim, d_model),
nn.GELU(),
nn.LayerNorm(d_model))
self.pe_embedding = None
def forward(self, src: Tensor, mask: Tensor):
"""
Args:
src: Tensor, shape [seq_len, batch_size]
Returns:
output Tensor of shape [seq_len, batch_size, ntoken]
"""
src = self.encoder(src) * math.sqrt(self.d_model)
src = self.pos_encoder(src)
output = self.transformer_encoder(src, src_key_padding_mask=( 1 -mask))
gene_output = self.decoder(output) # batch x seq_len x 128
# embedding = torch.mul(gene_output, mask.t().unsqueeze(2)).sum(0) # average over non zero genes
# In the new format, the cls token, which is at the 0 index mark, is the output.
embedding = gene_output[0, :, :] # select only the CLS token.
embedding = nn.functional.normalize(embedding, dim=1) # Normalize.
return gene_output, embedding
def predict(self, cell_embedding, gene_embeddings):
gene_embeddings = self.gene_embedding_layer(gene_embeddings)
dec = self.binary_decoder \
(torch.hstack((cell_embedding, gene_embeddings)))
return dec