-
Notifications
You must be signed in to change notification settings - Fork 4
/
README.txt
46 lines (26 loc) · 1.48 KB
/
README.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
Datasets:
---------
Movielens1M (1M interactions)
http://www.grouplens.org/node/73
Flixster (8M interactions)
http://www.cs.sfu.ca/~sja25/personal/datasets/
Yahoo! Music (700M interactions)
http://webscope.sandbox.yahoo.com/catalog.php?datatype=r
Datasets must be preprocessed to contain a single file where each line has the format:
user[TAB]item[TAB]rating
Local experiments with interaction-cut:
--------------------------------------
Use de.tuberlin.dima.recsys.ssnmm.interactioncut.Evaluate to evaluate the sensitivity of the prediction quality
to different interaction-cuts in small datasets.
Experiments on Hadoop:
----------------------
Use de.tuberlin.dima.recsys.ssnmm.ratingprediction.AverageRating to compute the average rating in the dataset.
Use de.tuberlin.dima.recsys.ssnmm.ratingprediction.UserItemBaseline to estimate user and item biases.
Run the similarity computation in parallel on your Hadoop cluster using Apache Mahout:
hadoop jar mahout-core-0.6-job.jar org.apache.mahout.cf.taste.hadoop.similarity.item.ItemSimilarityJob \
--input hdfs:///path/to/trainingfiles --similarityClassname SIMILARITY_PEARSON_CORRELATION \
--threshold 0.01 --maxSimilaritiesPerItem 50 --maxPrefsPerUser 600 --output hdfs:///path/to/output \
--tempDir hdfs:///path/to/temp
hadoop fs -copyToLocal hdfs:///path/to/temp/similarityMatrix/part* /path/on/local/disk
Use de.tuberlin.dima.recsys.ssnmm.ratingprediction.Evaluate to evaluate the prediction quality of the computed
similarities.