-
Notifications
You must be signed in to change notification settings - Fork 1
/
training.py
100 lines (77 loc) · 2.72 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import random, json,pickle, numpy as np, nltk, torch, torch.nn as nn
from numpy.core.arrayprint import _leading_trailing
from torch.utils.data import Dataset, DataLoader, dataset
from nltk.stem import WordNetLemmatizer
from nltk.stem.porter import PorterStemmer
from libraries.nltk_utilities import tokenize,stem,bag_of_words
from libraries.model import NeuralNet
with open('static/jsons/intents.json', 'r') as f :
intents= json.load(f)
all_words = []
tags = []
xy = []
for intent in intents['intents']:
tag = intent['tag']
tags.append(tag)
for pattern in intent['patterns']:
w = tokenize(pattern)
all_words.extend(w)
xy.append((w,tag))
ignore_words = ['?', '!','.',',']
all_words = [stem(w) for w in all_words if w not in ignore_words]
all_words = sorted(set(all_words))
tags = sorted(set(tags))
x_train = []
y_train = []
for (pattern_sentence,tag) in xy:
bag = bag_of_words(pattern_sentence,all_words)
x_train.append(bag)
label = tags.index(tag)
y_train.append(label) #CrossEntropyLoss
x_train = np.array(x_train)
y_train = np.array(y_train)
class ChatDataset(Dataset):
def __init__(self) :
self.n_sample = len(x_train)
self.x_data = x_train
self.y_data = y_train
def __getitem__(self, index) :
return self.x_data[index], self.y_data[index]
def __len__ (self):
return self.n_sample
batch_size = 8
hidden_size = 8
output_size = len(tags)
input_size = len(x_train[0])
learning_rate = 0.001
num_epochs = 1000
dataset = ChatDataset()
train_loader = DataLoader(dataset= dataset, batch_size=batch_size, shuffle=True, num_workers=0)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = NeuralNet(input_size, hidden_size, output_size).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
for epoch in range (num_epochs):
for (words, labels) in train_loader:
words = words.to(device)
labels = labels.to(device)
labels = labels.to(dtype=torch.long)
outputs = model(words)
loss = criterion(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (epoch+1) % 100 == 0:
print(f'epoch {epoch+1}/{num_epochs}, loss = {loss.item():.4f}')
print(f'final loss, loss = {loss.item():.4f}')
data = {
'model_state': model.state_dict(),
'input_size' : input_size,
'output_size': output_size,
'hidden_size' : hidden_size,
'all_words' : all_words,
'tags' : tags
}
FILE = 'data.pth'
torch.save(data, FILE)
print(f'training complete. File saved to {FILE}')